
-A166 029 INTEGRATED BATTLEFIELD EFFECTS RESEARCH FOR THE
NATIONAL TRAINING CENTER.. (U) SCIENCE APPLICATIONS
INTERNATIONAL CORP LA JOLLA CA D ERICKSON ET AL.

CLRSSIFIED 31 DEC 84 SRIC-R-LJF-84-019-RPP-1 F/G 5/9 U"

II

1.0

II IfL2i5

-I~cP REC1TO L T(R

AD-A 166 029 DNA-TR-85-13-AP-l

INTEGRATED BATTLEFIELD EFFECTS RESEARCH FOR THE
NATIONAL TRAINING CENTER
Appendix I-Feasibility Study of Transferring ARTBASS Code from a .

Perkin-Elmer/Lexidata System to a VAX/De Anza System

Science Applications International Corporation
P. 0. Box 2351
La Jolla, CA 92038-235 1

31 December 1984

Technical Report

CONTRACT No. DNA 001-81-C-0273

distribution is unlimited.

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE S400082466 V99QAXNLOO125 H2590D. W. 7,

Prepared for IlDq6
Director

___ DEFENSE NUCLEAR AGENCY
Washington, DC 20305- 1000 B3

C7-1

UNCLASSIFIED

REPORT DOCUMENTATION PAGE
a QEOz 0 C..aSS,;CA CN ' ;ESR C VE 'ARK %GS

UNCLASSIFIED "__ _ _-:'__ _ _
2E.R17 C_.ASSFcw A .,OIr 3 DIS ' N.oF~~F

N/A since Unclassified Approved for public release; distribution -?.-

Zb :EC._ASP-C7ON, DOWNFGAD,NG SCHEOLE is unlimited.
N/A since Unclassified "-"-_"""_.".-_-....

4 -ERFO'RMING ORGANIZArON REPORT NLMBER(S) S MONITORING ORGANIZA7ON 4EPCRT NL.MS-(S)

R :LJF-84-019 DNA-TR-35-13-AP- I

6a NAME OF PERFORMING ORGANIZATiON 6o OFF;C SYMBOL 7a NAME OF MONITORING ORGXNiZA7CN
Science Applications (if aoIicaalo) Director
International Corporation Defense Nuclear Agency

ic. .10DRESS Cry Stare nd ZIPCode) 'b ADDRESS Cry, State. ano ZIP Code)

P.O. Box 2351
La0 ola C92038 2Washington, DC 20305-1000 OLa Jolla, CA 92038-2351

Sa NAME OF :-NING. SPONSORING 8b OF;'C: SYMBOL 3 PROCREMEN" NSTRUMEN OENTFCA' ON %LM ER
ORGANIZA 7ON (If 4aodrcabIe)

DNA 001-81-C-0273

Sc- ADORESS (Cty, State. and ZIP Code) 'Q SOURCE OF ;F,,NNG NUNMBE2S

PROG.RAM PROEC- -ASK VGK
ELEMENT NO NO 40 AC=:-SScN NC

62715H V99QAXN L DH065313
-i.E Includf Security Clawhfcation)
INTEGRATED BATTLEFIELD EFFECTS RESEARCH FOR THE NATIONAL TRAINING CENTER
Appendix I-Feasibility Study of Transferring ARTBASS Code from a Perkin-Elmer/Lexidata

12 PERSONAL Akr.4O(S)
Erickson, 0.; lckler, J.; McKeown, P.; Metzger, L.; Plock, R.; Packard, B.; and Birney, J.

13a "V
0 E OF RE1ORT 13b TIME COVERED '4 0ATE OF REPCR Year Mont, Day) S -'AGE COL,N.-

Technical c=om 830613 'o 841230 841231 88
16 Sw.POLEMENTARY NOTATION
This work was sponsored by the Defense Nuclear Agency under RDT&E RMSS Code, S400082466
V99QAXNLO125 H25900.

7 COSA7! CODES 'S S.BSEC- "ERMS Coninue on reverse .t mecessaiy anal n oentrfy by O cIr uimber)
OI ROP SB.GROUP Training Military Doctrine

1 9 Integrated Battlefield
i5 1 7 1 Military Strategy

9 A S-RAC- Continue on 'everte ,f necelsary and dentify by 0lo<X number)

Research performed to evaluate and develop enhancements for integrated battlefield training
at the U.S. Army National Training Center is described. These enhancements had been identi-
fied and concepts developed for their application in earlier phases of this research. The
report consists of the basic volume summarizing the research tasks, approach, results, con-
clusions, and recommendations; plus twelve appendices which provide details on the nine
major tasks into which the research was divided. Research performed and the associated
appendices are as follows:

Development of nuclear and chemical environmental and effects software:
Analysis of nuclear algorithms Appendix A
Requirements specification for nuclear and chemical model algorithms

at the NTC Appendix B
Chemical model algorithm description Appendix C

ZSQ 5 8U7'ON AdALABIL~rY OF AEISTRAC7 _ RCSCR ASS,p CA 7 ON

C2 NC'ASSF ,: 'I ,NLM,.D M SAME AS tP 2 rc .SERS UNCLASSIFIED
'Za N4AME OF RESONSBLE NO'VIDUAL 7Eb EP ONE (incluae A3rea C,.e) '-' 0"C: S'%13CL
Betty L. Fox (202) 325-7042 . DNA/STTI

00 FORM 1473,34 MAR 13 APR eton mav oe sea vi erawsteo SEC_." C-ASS,, CA ' F -a - ":
All Ot @, ea,! OP*s are oosoie , .-. " -.~I t~'e~O'~ io UNCLASSIFIED

................... -......-.

UNCLASSIFIED

SECURITY CLASSIFCATION OF THIS PAGE

11. TITLE (Continued)

System to a VAX/De Anza System

19. ABSTRACT (Continued)

Demonstration of the system for combining live and notional battalions for training higher Owl.
level staffs in integrated battlefield (IB) command and control:

Functional requirements analysis for IB command and control simulation Appendix D
Report on the demonstration Appendix E

Analysis and design of field simulators for nuclear and chemical warfare:
Technical and operational impacts of field simulators Appendix F (
Capability of off-the-shelf paging system to communicate at Ft. Irwin Appendix G
Designs of field simulators Appendix H

Adaptation of nuclear and chemical software to other Army training models:
Feasibility of transferring ARTBASS Code from Perkin-Elmer to VAX Appendix I
Division/Corps training simulation functional analysis Appendix J
ARTBASS conversion to VAX Appendix K
Requirements specification for adding nuclear and chemical models

to ARTBASS Appendix L

This research provided the following products:
Software which models nuclear and chemical environment and effects with appropriatefidelity and timing for training and which is ready for installation on NTC computers.

A demonstrated capability for combining actions of real battalions with computer
simulated notional battalions for training brigade/division commanders and staffs.

An analysis of the impacts of using field simulators at the NTC for nuclear and
chemical warfare training, and the designs of the selected simulators (i.e.,
common control system, radiacmeters, dosimeters, chemical detectors).

Analysis of the application of nuclear and chemical models to other Army battalion
training models; conversion of the ARTBASS model to operate on the VAX 11/780;
incorporation of the nuclear and chemical models into ARTBASS; and demonstration
of the nuclear and chemical models using ARTBASS.

UNCLASSIFIED
SECURITY CLASSIPICATION OP THIS PAGE

r °.'.

CONVERSION FACTORS FOR U.S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT

To Convert From To Multiply ay

angstrom Meers (m [.000 000 x E -10 .

atmosphere (normal) Kilo pascal (kPa) 1.013 25 X E -2

bar kilo pascal (kPa) 1.000 000 X E +2

bMen tcer
2

(m
2
) 1.000 000 X E -28

British thermal unit (thetmochemical) Joule (J) 1.054 350 X E -3

zal (thermochemicsi)'ca meta ouLem" (J/n,) ..184 000 X E2 -2
calorie (thermochemical))oule (J) 4.184 300

calorie (chermOchemLcal)/g 2oule per kilogram (J/kg) 4.184 000 X E -3

curie giga becquerel (Cbq) 3.700 000 K E -1

degree Celsius degree kelvin (K) t V C .173.15

degree (angle) radian (tad) 1.745 329 X E -z
degree Farettheit degree kelvin (K) Wt " F + 459.67)/

1.8

electron volt joule (J) 1.602 19 X E -19

ert joule (J 1.000 000 X E -7

erg/second -act (W) 1.000 000 X E -,

foot meter (m) 3.048 000 K E -1

foot-pound-force joule (J 1.355 818

gallon (U.S. liquid) meter (m 3.785 412 K E -3

inch meter m) 2.540 000 X E -2

jerk joule (J) 1.000 000 X E -9

joule kilogram (1/kg) (radiation
dose absorbed) gray (Gy)* 1.000 000

kilotona terajoules 4.183

kip (1000 lbf) newton (N) 4.448 222 K E -3

kip/inch
2

(ksi) kilo pascal (kPa) 6.894 757 X E -3

ktap newton-secondim (N-S/m") 1.000 000 X E -2

micron meter (m) 1.000 000 X E -6

mlI meter (m) 2.540 000 K E -5

ile (interoational) meter (m) 1.609 344 X E .3

ounce kilogram (kg) 2.834 952 K E -2

pound-force (lbf avoirdupois) newton (8) ..48 22-2

pound-force inch newton-meter (4n-) 1.129 348 K E --

pound-force/inch newcon/meter (S/m) 1.751 268 X E -2

pound-force/foot
2

kilo pascal (kPa) 4.788 026 x E -E

pound-force/inch
2

(psi) klo pascal (kEa) 6.894 '57

pound-mae (Ibm avoirdupois) 'Kilogram tk%) -. 535 924- < E

pound-mass-fooC (moment of inertia) kilogram-meter kg-') -.21. 211 12 -X

pound-mass/foot
3

kilogram-meter3 (kg m .361 - x E -i

red (radiation dose absorbed gray (Gv)* 1.300 300 x -:

roentgeo. coulomb/kilogram (Ckg) . 60 I -- -

shako second (s) 1.000 300 x E -

s hg kilogram kkg) ;..59 3Q0 E-

torr (lqw Hg, 3" C) kilo 2ascal (kP3) 1.33 E -i

*The gray (Gy) is the accepted SI unit equivalent to the ener,>' impartec

by ionizing radiation to a mass and corresponds to one joule kilogram.

The becquerel (3q) is the SI unit of radioactivity, I Bc = event s.

iii

iV

..

TABLE OF CONTENTS

Section Page

CONVERSION TABLE3..

1 INTRODUCTION . .I................ 1

2 CONSIDERATIONS FOR THE TRANSFER OF
ARTBASS-M CODE 5

2.1 HARDWARE

2.1 .A2.1R Construts9

2.1.1 Perkin-Elmer (Model 3240) 0
2.1.2 VAX 11/780 6
2.1.3 Hardware Assessment * 8

2.2 FORTRAN. o o 8

2.2.1 Constructs 9

2.2.1.1 Perkin-Elmer o o 10

2.2.1.2 VAX 11/780 o o o 10

2.2.2 Intrinsic Functions. 10

2.2.2.1 Perkin-Elmer 12
2.2.2.2 VAX 11/780 . . . o o 12

2.2.3 Data Manipulation Functions 12

2.2.3.1 Perkin-Elmer 17
2.2.3.2 VAX 11/780 o 17

2.2.4 Character Manipulation Functions 17

2.2.4.1 Perkin-Elmer . o . . . o . . . 20
2.2.4.2 VAX 11/780 . . o . o o o o 20

2.2.5 Language Extensions 20

2.2.5.1 Perkin-Elmer 21
2.2.5.2 VAX 11/780 21 "

2.2.6 Input/Output Functions 22

2.2.6.1 Perkin-Elmer 22

2.2.6.2 VAX 11/780 22

. . . *.-

TABLE OF CONTENTS (Continued)

Section Page

2.2.7 Assessment 23

2.2.7.1 Constructs * . . 23
2.2.7.2 Instrinsic Functions 23
2.2.7.3 Data Manipulation Functions *23

2.2.7.4 Character Manipulation Func-
tions. 23

2.2.7.5 Language Exensions 23
2.2.7.6 Input/Output Functions 23 -

2.3 ASSEMBLY/MACHINE LANGUAGE 23

2.3.1 Perkin-Elmer24

2.3.2 VAX 11/780 24
2.3.3 Assessment 24

2.4 INPUT/OUJTPUT 24

2.4.1 File Management. . 25

2.4.1.1 Perkin-Elmer 25

2.4.1.2 VAX 11/780 25

2.4.2 File Organization . 25

2.4.2.1 Perkin-Elmer 26
2.4.2.2 VAX 11/780 28

2.4.3 Assessment 28

2.5 EXECUTION 28

2.5.1 Perkin-Elmer 28

2.5.1.1 Overlays ... 28
2.5.1.2 Task and Process Development .29

2.5.1.3 Task Communication . 30 -

2.5.2 VAX 11/780 30

2.5.2.1 Overlays ... 30
2.5.2.2 Task and Process Development .30

2.5.2.3 Task Communication 30

7,~ -W. . -

TABLE OF CONTENTS (Continued)

Section Page

2.5.3 Assessment 32

2.5.3.1 Overlays 32I 2.5.3.2 Task and Process Development. 32
2.5.3.3 Task Communication 32

2.6 COMMAND LANGUAGE 35

2.6.1 Perkin-Elmer 35
2.6.2 VAX 11/780 36
2.6.3 Assessment 37

2.7 CODE UNIFICATION 37

2.7.1 Data Manipulation Functions 38
2.7.2 Character Manipulation Functions 39
2.7.3 Task Communication 39

3 ARTBASS-M CODE TRANSFER PROCEDURES 41

3.1 FORTRAN TRANSFER. 41

3.1.1 Perkin-Elmer to VAX 11/780 42
3.1.2 VAX 11/780 42

3.2 ASSEMBLY LANGUAGE TRANSFER. 42

3.2.1 Perkin-Elmer to VAX 11/780 42U 3.2.2 VAX 11/780 to Perkin-Elmer . 43

3.3 SYSTEM UTILITY TRANSFER 43

3.3.1 Perkin-Elmer to VAX 11/780 43
3.3.2 VAX 11/780 to Perkin-Elmer 43 5

3.4 SCENARIO DATA BASE PROCESSING 43

3.4.1 Perkin-Elmer to VAX 11/780 43 .-

3.4.2 VAX 11/780 to Perkin-Elmer 43

3.5 INPUT/OUTPUT TRANSFER. 43

3.5.1 Perkin-Elmer to VAX 11/780 44
3.5.2 VAX 11/780 to Perkin-Elmer 44

Vi- , .

mill

TABLE OF CONTENTS (Continued)

Section Page

3.6 FRONT-END INTERFACE 44

3.6.1 Perkin-Elmer to VAX 11/780 44

3.6.2 VAX 11/780 to Perkin-Elmer 44

3.7 JOB INITIATDN AND CONTRL 44

3.7.1 Perkin-Elmer to VAX 11/780 44
3.7.2 VAX 11/780 to Perkin-Elmer 45

4 FRONT-EACC .T R.E... 46

4.1 INTRODUJCTION 46

4.2 HARDWARE . 46

4.2.1 CATTS 46
4.2.2 ARTBASS-M 47
4.2.3 NTC Test Support Driver 47
4.2.4 Mace 50
4.2.5 Hardware Assessment ... 50

4.3 SIMULATION CONTROL 53

4.3.1 CATIS 53
4.3.2 ARTBASS-M 56
4.3.3 NTC Test Support Driver 56
4.3.4 Mace 57
4.3.5 Simulation Control Assessment 57

4.4 MAP DISPLAY 57

4.4.1 CATTS 7 57
4.4.2 ARTBASS-M 58
4.4.3 NTC Test Support Driver 58
4.4.4 Mace 59
4.4.5 Map Display Assessment 59

4.5 TACTICAL/OPERATIONAL MENUS 59

4.5.1 CATTS 60
4.5.2 ARTBASS-M 60
4.5.3 NTC Test Support Driver 61
4.5.4 Mace 62
4.5.5 Menu Assessment 62

vii

TABLE OF CONTENTS (Concluded)

wr

Section Page

4.6 SYMBOLOGY 63

4.6.1 CATTS 63 -

4.6.2 ARTBASS-M 64
4.6.3 NTC Test Support Driver 65
4.6.4 Mace 66
4.6.5 Symbology Assessment 66

4.7 SIDE PANEL DISPLAYS 66

4.7.1 CATTS e . . . * * 67
4.7.2 ARTBASS-M . . . * 9 . , 9 e 67
4.7.3 NTC Test Support Driver 67
4.7.4 Mace . 0 0 0 a 67
4.7.5 Side Panel Assessment 67

4.8 ALPHANUMERIC DISPLAYS 68

4.8.1 CATST 68

4.8.1.1 Unit Special Status Report . . 68
4.8.1.2 Log/Admin Status Report . . . 68
4.8.1.3 Tactical Alerts 68
4.8.1.4 Interactor Alerts 69

4.8.2 ARTBASS-M 69

4.8.2.1 Unit Special Status Report . . 69
4.8.2.2 Log/Admin Status Report . . . 70
4.8.2.3 Tactical Alerts 70
4.8.2.4 Interactor Alerts 70

4.8.3 NTC Test Support Driver 70

4.8.3.1 Unit Special Status Report . . 70
4.8.3.2 Log/Admin Status Report . . . 71
4.8.3.3 Tactical Alerts 71
4.8.3.4 Interactor Alerts 71

4.8.4 Mace 71

4.8.4.1 Unit Special Status Report 71 '

4.8.4.2 Log/Admin Status Report . . . 72
4.8.4.3 Tactical Alerts 72
4.8.4.4 Interactor Alerts 72 U!-

4.8.5 Alphanumeric Display Assessment 72

Viii ii

I• .]-

r * * te-..

- - .-.---r-.--.- i--.

• .W- .

LIST OF ILLUSTRATIONS

Figure Page

1 SYNOPSIS OF STUDY FINDINGS BY SECTION . • 3

2 ELEMENTARY INTRINSIC FUNCTIONS 13
3 MIN AND MAX INTRINSIC FUNCTIONS 14
4 TYPE CONVERSION INTRINSIC FUNCTIONS . . . 15

5 MISCELLANEOUS INTRINSIC FUNCTIONS 16
6 DATA MANIPULATION FUNCTIONS 18
7 CHARACTER MANIPULATION FUNCTIONS 19 O0
8 AVAILABLE I/O STATEMENTS 27

9 ACCESS MODES FOR EACH FILE O1GANiZATION . 27
10 VAX COMMUNICATION, SYNCHRONIZATION, AND

SHARING FEATURES 31
11 PERKIN-ELMER TASK AND PROCESS DEVELOPMENT

COMMAND FILE 33
12 VAX TASK AND PROCESS DEVELOPMENT COMMAND

FILE 34

13 CATTS EQUIPMENT CONNECTION 48
14 ARTBASS-M EQUIPMENT CONNECTION 49
15 TEST SUPPORT DRIVER EQUIPMENT CONNECTION. 51
16 MACE EQUIPMENT CONNECTION 52
17 VAX/DE ANZA ARTBASS 54 " " ...

18 VAX/LEXIDATA ARTBASS 55

DIAL

cc, t\,

ix I"

w
o "

L

SECTION 1

INTRODUCT ION

The purpose of this document is to delineate those items
involved in the creation of an ARTBASS-M development system
which will be based on a VAX 11/780 system. This includes
the followingitems: OIL

1. The physical transfer of ARTBASS-M code currently
resident on the Perkin-Elmer system to a permanent
development system based on the VAX 11/780.

2. The conversion of Perkin-Elmer based FORTRAN 77
code to VAX FORTRAN 77.

3. The implementation of the working ARTBASS-M system
on the VAX.

4. The subsequent transfer of the working VAX
ARTBASS-M code back to the Perkin-Elmer system.

5. The installation and implementation of the working
ARTBASS-M system on the Perkin-Elmer system.

Each of these aspects will be discussed in the following k.
sections.

In order to fully understand the ensuing discussion, the
underlying assumptions of this study should be enumerated.
They are the following:

1. There will be no modifications to the ARTBASS-M
code that currently exists on the Perkin-Elmer
system.

2. Only those lines of code that do not or cannot
execute on the VAX system will be altered to make
the Perkin-Elmer ARTBASS-M code resident on the VAX
system.

3. The resultant VAX code will be developed such that

it will execute on the Perkin-Elmer system as well.

4. The VAX system will be considered as the resident I

ARTBASS-M development system.

As in almost any study involving the relocation of existing
code from one computer system to another, certain areas of
commonality are noticed. To facilitate and reduce the

1

V[

differences in support code and to enhance system
maintainability and configuration control, a list of future
options that will further unify the support code on both F
systems will be noted.

An overview of the findings of this study is presented in
the following figure (Figure 1). At the time of this study, -[
the standards and conventions used to implement ARTBASS-M on
the PERKIN-ELMER computer system are not known. Certain of p.
the findings of this study may not apply to the actual
conversion situation. For example, assembly language may
not actually be present on ARTBASS-M, so rewriting that code
may not be necessary.

2

'.r

~---o" " +

MA

SECTION/SUBJECT SYNOPSIS OF FINDINGS -
*--------------------------------+--

I FORTRAN: '
I Constructs I No major difficulties. "

Intrinsic functions I No expected problems.

I Data manipulation I Underlying code rewritten; I
functions I minimal problems.

I Character manipulation I Underlying code rewritten; '
I functions I minimal problems. .

Language extensions I User written utility required I
I to format at transfer time.

Input/Output functions I Underlying code rewritten; "
I medium difficulty. .

+--------------------------------+--
1 ASSEMBLY LANGUAGE: I .

I All code rewritten; major "
I undertaking; medium difficulty. I

+--------------------------------+--
I INPUT/OUTPUT: I I
I File management I Nontransferable; machine
I I dependent. .

I File organization I No expected problems.
------------------ +--
I EXECUTION:
I Overlays I Not supported on VAX; medium I

I difficulty.

I Task and process I Nontransferable; machine
I development I dependent; low difficulty. I

I Task communication I Most difficult part of
I I conversion; high difficulty. -
+--------------------------------+--
I COMMAND LANGUAGE: , -
iI Nontransferable; low I

I difficulty. I
+--------------------------------+--
I CODE UNIFICATION: I

I New code; new capability; I
I I medium-to-high difficulty. I

Figure 1. Synopsis of study findings by section.

3

- --

ISECTION/SUBJECT I SYNOPSIS OF FINDINGS
4-----r--------------------------4---
I TRANSFER PROCEDURES: I
I FORTRAN transfer I Perkin Elmer to VAX medium

II difficulty; VAX to Perkin Elmer I
I I low difficulty.I

I System utility I New code; medium difficulty. I
I transfer PEI

I Scenario data base I Single, one-way transfer;
I processing I medium difficulty.I

I Input/Output transfer 1 I/0 capability same; low
I I difficulty.I

I Front-end interface I Interactive systemI
II configuration dependent; high I
I I difficulty.

I Job initiation and I Nontransferable; lowI
I control I difficulty.I
4-------------------------------.---

I FRONT-END ARCHITECTURE:II
II Partial transferability; I
I I medium difficulty.I

4-----------------------------+---h

Figure 1. Synopsis of study findings by section
(continued).

4

SECTION 2
CONSIDERATIONS FOR THE TRANSFER OF ARTBASS-M CODE

2.1 HARDWARE.

•.-. o..

2.1.1 Perkin-Elmer (Model 3240).

The Perkin-Elmer 3240 is a 32-bit machine with a memory
capacity of 256,000 bytes to 16 million bytes. The
metal-oxide semiconductor (MOS) memory is installed in
256,000 increments with a limit of four million bytes per
memory bank.

The input/output devices attached to the computer are
classified according to their required speed. The slower
peripherals, such as printers, consoles and card readers
interface with the computer through the multiplexor bus.
The bus can handle up to 1023 devices. The high speed
devices, such as disk and tape drives, interface through the
Direct Memory Access (DMA) bus. Four DMA buses are U
available and each bus has eight ports.

The processor has a 8192 byte cache for fast processing of
instructions and it has a user Writable Control Store of
8192 bytes for fast execution of commonly used application
utilities. A Floating Point Processor is available to
increase the processing speed of double-precision and
floating point instructions. The processor also provides
the capability of having one megabyte of shared memory,
which can be shared by up to fourteen Central Processing
Units.

The instruction set in the Perkin-Elmer consists of the
following major functions:

1. Load/store halfwords, fullwords and multiple words

2. Fixed-Point arithmetic

3. Logical operations (AND, OR, Exclusive OR, Compare
and Test)

4. Logical and arithmetic shifts and rotates

5. Bit string and bit manipulation

6. Floating-point arithmetic on single (32-bit) and
double (64-bit) precision operands

5

. .

7. Status and control functions

8. List operations

9. Data handling operations

10. Input/output

11. Byte manipulations

12. Writable Control Store operations

13. Mixed floating-point transfers

14. Privileged system functions

15. Storage-to-storage instructions

16. Decimal conversion instructions

The Perkin-Elmer system provides the following software

languages:

1. CAL and CAL MACRO

2. FORTRAN VII

3. RPG II

4. RELIANCE

5. BASIC II

6. COBOL

2.1.2 VAX 11/780.

The Digital Equipment Corporation VAX 11/780 is a 32-bit
machine with a physical memory capacity of 256,000 bytes to
eight million bytes. The computer has a virtual memory
system, which allows a user to address up to four billion
bytes of virtual address space. The MOS memory is installed
in 256,000 byte increments.

The slower input/output devices, such as card readers,
printers and consoles, interface through the UNIBUS. Four
UNIBUS adapters can be installed in the computer and up to
fifteen devices can be attached to each bus. The high speed
input/output devices, such as disk and tape drives,
interface with the computer through the MASSBUS. Four
MASSBUS adapters can be installed in the computer and up to -
eight devices can be attached to each bus.

6

. . .. &Wild

The processor has a 8192 byte cache for fast processing of
instructions and it has a user Writable Control store of 24
kilobytes for fast execution of commonly used application
utilities. A Floating-Point Accelerator is available to
increase th.e processing speed of double-precision and
floating-point instructions. The processor provides for one
to eight megabytes of memory that can be shared by more than
one Central Processing Unit.

The instruction set on the VAX 11/780 includes the following
major functions:

1. Integer and logical instructions

2. Floating-point instructions

3. Packed-decimal instructions

4. Character-string instructions

5. Bit-field instructions

6. Queue manipulation instructions

7. Address manipulation instructions

8. User-programmed general register control instruc-

tions

9. Branch, jump and case instructions

10. Subroutine call instructions

11. Procedure call instructions

Digital Equipment Corporation provides the following

software languages for the VAX 11/780:

1. MACRO assembler

2. FORTRAN

3. COBOL

4. BASIC

5. C

6. PL/I

7

.-.. .

•~~ "-. -°.,.•

7. PASCAL

8. CORAL 66

9. BLISS-32

2.1.3 Hardware Assessment.

The Perkin-Elmer 3240 and the VAX 11/780 are both 32-bit
machines with very similar architectures. The Perkin-Elmer -

has twice the memory capacity of the VAX; however, for this
application, eight megabytes of memory is more than
sufficient. The VAX is a virtual memory system and the
Perkin-Elmer is not; therefore, overlaying of subroutines
might be required on the Perkin-Elmer.

Both computers have sufficient buses and ports to attach the
required peripherals. The instruction sets of the two
computers provide the capabilities necessary to perform
intertask communications and bit, byte, floating points
instructions required by the math model and front-end. The
VAX 11/780 has more languages available than the
Perkin-Elmer; however, both machines have FORTRAN and
assembler which are required by the math model and
front-end.

The literature, provided by both vendors, indicates that the
computing power of the Perkin-Elmer 3240 and the VAX 11/780
is approximately equal.

2.2 FORTRAN.

Although FORTRAN is a higher-level language and is designed
to be portable between machines, most computer 'manufacturers
have taken some liberties with the implementation of the
language. However, most manufacturers market their systems
as having met FORTRAN 77 standards (American National
Standard Programming Language FORTRAN, ANSI X3.9-1978). The

-'_. difficulty with meeting FORTRAN 77 standards though, is that
it merely specifies the form and establishes the
interpretation of programs expressed in the FORTRAN
language. It does not dictate how to implement the
language.

The scope of FORTRAN 77 is very explicit. It includes the *- -

following items:

1. The form of a program written in the language.

2. Rules for interpreting the meaning of a program and

it's data.

8

. . .
. - . . . , . ,, - , , • .- ' .. .= . , ,: . ,

17.*i - --

3. The form of writing input data to be processed by
the program.

4. The form of the output data generated by the
program.

The FORTRAN 77 standard does not specify the following
items:

1. The mechanism by which programs are transformed for
use.

2. The method of program and data transcription to or
from the data processing medium.

3. The operations required for setup and control of
the use of programs on a system.

4. The results when the rules of the standard fail to
establish an interpretation.

5. The size or complexity of a program and its data
that exceeds the capacity or capability of a
system.

6. The range or precision of numeric quantities and
the method of result rounding.

7. The physical properties of input/output records,
files, and units.

8. The physical properties and implementation of
stor age.

The FORTRAN 77 standard generally refers to permissible
forms and relationships for standard-conforming programs
rather than for processors.

This section discusses those properties and conditions of
FORTRAN that usually effect the transfer of code between
computers. The main areas of consideration will concern
FORTRAN constructs, intrinsic functions, data and character
manipulation functions, any language extensions, and
input/output functions.

2.2.1 Constructs.

Constructs are the building blocks of programs. They define
the forms and relationships between well defined program -

units. They are designed to specify the syntax and ',
interpretation of sets of instructions. This section deals
with the FORTRAN 77 constructs adopted by both systems.

9
.".. . . .

2.2.1.1 Perkin-Elmer. The Perkin-Elmer series of 3200 and
3400 machines are Ofully compliant with FORTRAN 770. This
means- that they have met the form and constructs of the
FORTRAN 77 standard. They have, however, also developed and U
implemented "language extensions" which augment the FORTRAN
77 standard in ways which they believe will provide
"increased programmer convenience" and enhance the usability
of their machines.

2.2.1.2 VAX 11/780. The VAX 11/780 systems also meet the
form and constructs of the FORTRAN 77 standard. They have,
however, also developed and implemented "language
extensions' which augment the FORTRAN 77 standard in ways
which they believe will provide increased programmer
convenience and enhance the usability of their machines.

2.2.2 Intrinsic Functions.

Intrinsic functions are functions which are available
through system libraries at compile time. These functions
include:

1. Elementary functions

Square root

- Exponential

- Trigonometric

- Logarithm

- Inverse trigonometric

- Hyperbolic .7

2. Min and max functions

3. Type conversion functions

4. Miscellaneous functions

- Remainder

- Complex number manipulation

- Absolute value

- Sign propagation

10
k: L_

- Positive difference

-Truncation and rounding

Double-precision results from single-precision
variables

The particular concern with using intrinsic functions is in
three areas. These are:

1. Calling arguments and sequences.

2. Register usage.

3. Error returns

4. Default values.

5. Function name.

Since these intrinsic functions are library routines, their
calling sequence and arguments are fixed and occur in a
specific order. Further, an intrinsic function on one
machine may not have the same number of arguments as on
another.

Another potential area of concern is the use of registers as
part of the branch and link connections with the intrinsic
functions. This is of paramount importance when executing
user developed assembler language code and the logic
dictates a call to an intrinsic function. It becomes
important to have the correct values loaded into the
appropriate registers. Furthermore, it is necessary to
verify that after the return from the intrinsic function,
the values have not been 0clobberedw or overwritten.

Error returns and default values are not usually standard on
different systems. It is possible that arguments that are
within allowable ranges on one system are not within range
on another. For example, the call to the tangent intrinsic
function, which computes the tangent of an angle given its
sine and cosine, is mathematically defined for all angles
except for vertical lines (in which case the cosine of the
angle is zero).

Some systems will produce a fatal error and processing
halts. Other systems will recognize the error but return
erroneous values. Still other systems will return a default
value of zero. Not all default values returned will . "
necessarily be the same on all machines.

IIr.

Lastly, intrinsic functions that provide the same capability
may not have the same name. In this case, a desired
function call on one system will not be the same on another
system. Figures 2 through 5 show the intrinsic functions
available on both systems.

2.2.2.1 Perkin-Elmer. As shown in Figures 2 through 5, the -

Perkin-Elmer system provides an extensive assortment of - -

intrinsic functions. They represent commonly required
computations and are predefined with respect to the name of
the routine and the type of data associated with the
arguments.

In some instances, the Perkin-Elmer system allows a group of
intrinsic functions with the same mathematical definitions
to be given a generic name. When this generic name is used
within an expression, the specific function invoked depends
upon the type of the actual arguments. The specific
function names are the ones shown in Figures 2 through 5.

2.2.2.2 wxl 11780. Figures 2 through 5 also show the VAX
11/780 intrinsic functions. The VAX also supports generic
and specific intrinsic function names. The actual routine
that is invoked is resolved at compilation time and is
determined by the type of arguments that are used.

The VAX system also provides a few functions that the
Perkin-Elmer system does not. However, for the types of
applications the math model uses, these functions will not
become a part of the operational system.

2.2.3 Data Manipulation Functions.

Data manipulation functions are those routines which are
provided as part of the system which manipulates bits,
bytes, halfwords, and performs bit string shifts. These
types of routines are becoming more prevalent on systems but
are not necessarily standard.

Data manipulation functions are designed to operate on ft
subsets of a word. These subsets are dependent on the word
structure implemented for the system. Not all systems have
the same word structure. Some systems number positions or
locations from the left, while others are from the right.
In addition, the position or location may be numbered
starting at zero or one on a particular system.

Data manipulation functions suffer from the same problems as
intrinsic .unctions. However, user written routines can be
developed that always perform data manipulations in the same

12

r -4

.....................................

I I I DATA TYPE I
I SYMBOLIC +-----------------------+ I
I DEFINITION I NAME I ARGUMENT I RESULT I REMARK I
4.-------------+--------------+--------------+--------------------------

I (al)**O.5 I SQRT I Real I Real I Same I
I DSQRT JDP IDP ISame I

I CSQRT I Complex I Complex I Same I
I CDSQRT I DP cmplx I DP cmplx I Same I
----- --- + j..

I e**(al) I EXP I Real I Real I Same I
I DEXP IDP IDP ISame I
I CEXP I Complex I Complex I Same I
I CDEXP I DP cmplx I DP cmplx I Same I

4.-------------4--------------4--------------4--------------------------

I log(al) I ALOG I Real I Real I Same I
I DLOG IDP IDP ISame I
I CLOG I Complex I Complex I Same I
I CDLOG I DP cmplx I DP cmplx I Same I
I ALOG10 I Real I Real I Same I
IDLOG10 IDP IDP ISame I

4--------------+--------------+--------------+-------------------------

I sin(al) I SIN I Real I Real I Same I
IDSIN IDP IDP ISame I
I CSIN I Complex I Complex I Same I
I CDSIN I DP cmplx I DP cmplx I Same I

4--------------+--------------+--------------4-------------------------

I cos(al) I COS I Real I Real I Same I
IDC3S IDP IDP ISame I
I CCOS I Complex I Complex I Same I
I CDCOS I DP cmplx I DP cmplx I Same I

4.-------------+--------------4--------------4--------------------------

I tan(al) I TAN I Real I Real I Same I
IDTAN IDP IDP Same I

4--------------+--------------+--------------4--------------4-----------

,sin(al) I ASIN I Real I Real I Same I -
I DASIN I DP I DP I Same I . . . -

I ASIND I Real I Real I Vax I
I DASIND I DP I DP I Vax I -.
------- ---+

I arccos(al) I ACOS I Real I Real I Same I
I DACOS IDP IDP ISame I
I ACOSD I Real IReal I Vax I
I DACOSD IDP IDP IVax -

------- --+

Note: Indicated differences between the two systems are not
expected to be used.

Figure 2. Elementary intrinsic functions.

13

I DATA TYPE i I
I ISYMBOLIC ----------------------- + I
I DEFINITION I NAME I ARGUMENT I RESULT I REMARK I
4 --- +------------+

I arctan(al) I ATAN I Real I Real I Same I
I DATAN I DP I DP I Same I

I I ATAND I Real I Real I Vax I
iDATAND I DP I DP I Vax I

4------ - ---+
I arctan(al/a2) I ATAN2 I Real I Real I Same I
SI DATAN2 I DP I DP I Same I

I ATAN2D I Real I Real I Vax I
I DATAN2D I DP I DP I Vax I

4-------------+--------------+--------------+---------------------------+

I sinh(al) I SINH I Real I Real I Same I
I I DSINH I DP I DP I Same I
4------- --- +
I cosh(al) I COSH I Real I Real I Same I

I DCOSH I DP I DP I Same I
------ --

I tanh(al) I TANH I Real I Real I Same I
I DTANH I DP I DP I Same I

4-------------+--------------+--------------+--------------4------------4-

Note: Indicated differences between the two systems are not
expected to be used.

Figure 2. Elementary intrinsic functions (Continued).

---------------------------- 4---4-

I DATA TYPE
I I SYMBOLIC 4------- ---------------- I
I DEFINITION I NAME I ARGUMENT I RESULT I REMARK I
4----------------4---------------4---------------------------
I max(al,...,aN) I AMAXO I Integer I Real I Same I
I I AMAXI I Real I Real I Same I

I DMAXI I DP I DP I Same I
I I MAXO I Integer I Integer I Same I
I I MAX1 I Real I Integer I Same I
4-------------------------------4---------------------------
I min(al,...,aN) I AMINO I Integer I Real I Same I

I AMINl I Real I Real I Same I
I I DMIN1 I DP I DP I Same I

I MINO I Integer I Integer I Same I
I I MINI I Real I Integer I Same I
4---+
Note: Indicated differences between the two systems are not

expected to be used.

Figure 3. Min and max intrinsic functions.

14

S.r .

. . . - ,.. . . .• ,. .-. .- . , ..~. - ,...•

-'- --.------------------------------------. ----- --.----

I I DATA TYPE I
I SYMBOLIC +-----------------------+ I
I DEFINITION I NAME I ARGUMENT I RESULT I REMARK I

----------------- +--------------1----------------------------

I dble(al) I DBLE I Real I DP I Same I
I Complex IDP I P&E I

i DP cmplx IReal IP&E -
I DFLOAT I Integer I DP I Same I

+-------------+--------------+--------------+---------------------------
I real(al) I FLOAT I Integer I Real I Same I

I SNGL IDP IReal ISame I
I REAL I Integer I Real I Same I

IComplex IReal Vax I
I DREAL IDP cmplx IDP ISame I

-I-------------+---------------+--------------+--------------------------
I int(al) I IDINT I DP I Integer I Same I

I Complex I Integer I P&E I
I Integer I Integer I P&E I

I IFIX I Real I Integer I Same I
I INT I Real I Integer I Same I
I INT2 I Real I Integer I Same I

I DP IInteger IP&E
I Complex I Integer I P&E I

I CMPLX I Real I Complex I Same I
I Integer I Complex I Same I
I DP Complex ISame I

I DCMPLX I Real I DP cmplx I Same I
I Integer I DP cmplx I Same I
I DP IDP cmplx ISame I
I Complex I DP cmplx I Same I

Note: Indicated differences between the two systems are not

expected to be used.

Figure 4. Type conversion intrinsic functions.

1.

• • .

15. ,.

+ - .--- + --I DATATYPE I

I SYMBOLIC ----------------------- I
I DEFINITION I NAME I ARGUMENT I RESULT I REMARK I
4.------------+--------------+--------------4---------------------------
I Remainder fal I MOD I Integer I Integer I Same I
I - (int(al/a2) I AMDD I Real I Real I Same I
I *al)] DMOD IDP I DP I Same I
------ ------------------------ --------------------------
I Complex number I AIMAG I Complex I Real I Same I
I manipulations I DIMAG I DP cmplx I DP I Same I
I CONJG I Complex I Complex I Same I

I DCONJG I DP cmplx I DP cmplx I Same I
+-------------+--------------+--------------+---------------------------
I Absolute value I ABS I Real I Real I Same I
I Hall] I CABS I Complex I Real I Same I

I DABS IDP I DP Same I
I CDABS IDP cmplx I DP ISame I
I IABS I Integer I Integer I Same I

4-------------+--------------+--------------+---------------------------
I Sign IDSIGN IDP I DP ISame I
I propagation I ISIGN I Integer I Integer I Same I

I SIGN IReal I Real ISame I
4-------------+--------------+--------------+--------------------------
I Positive I DIM I Real I Real Same I
I difference [al I IDIM I Integer I Integer I Same I
I - min(al,a2)] I DDIM I DP I DP I Same I
------ -------------- +--------------------------------------
I Truncation and I AINT I Real I Real I Same I
I rounding IDINT IDP I DP ISame I

I ANINT Real I Real ISame I
I DNINT IDP I DP ISame I

I NINT I Real I Integer I Same I
I IDNINT I DP I Integer I Same I

4--------------4--------------+--------------+-------------------------
I DP product of I DPROD I Real I DP I Same I
I SP variables I I I I
4-------------+--------------+--------------4--------------------------
I Zero-extend I ZEXT I Logical I Integer I Vax I

I Integer I Integer I Vax I
------ ---------------------------- +-----------------------+
Note: Indicated differences between the two systems are not

expected to be used.

Figure 5. Miscellaneous intrinsic functions.

I .,

16

. WE..

.. . .

- -. -'-. .

order. This is a relative positive point in that once they
are implemented on a system, packing and extracting the data
is usually from the same relative locations within the word
structure.

. Figure 6 summarizes the data manipulation functions that are
available on both systems.

2.2.3.1 Perkin-Elmer. The set of standard boolean
operations is fully operative on the Perkin-Elmer system.
They also offer a standard set of bit processing routines.
As a relative plus, Perkin-Elmer also has byte processing -. -

capabil ities.

The areas wherein Perkin-Elmer does not have the same or
equivalent functions is relatively minor. There are
routines that can be written to provide the missing support;
and, in fact, the routines can be made general enough to run
on either machine without recoding when transfers are made
between systems.

2.2.3.2 VAX 11/780. As shown in Figure 6, the data
manipulation functions that are available on the VAX system
are, in general, supported on the Perkin-Elmer system. The
primary differences may present major difficulties. These
functions are the bit extraction, bit set, bit test, and bit
clear.

These four functions are used frequently by the math model
since most of its data tables tend to be bit field oriented.
Therefore, any use of these VAX system functions will have .
to be limited since the Perkin-Elmer system has no
equivalent. However, as mentioned above, general service
routines can be written that are independent of the system
on which they are executing.

2.2.4 Character Manipulation Functions.

Character manipulation functions suffer from the same
problems that intrinsic functions and data manipulation
functions do. Those are mainly calling arguments and
sequences. However, character data is also dependent on the
word structure implemented on the machine.

There is a standard character set called ASCII. These
characters have a fixed binary representation in memory.
The recognition of these characters is not as much a problem -- -

as is the format of their locations within the word
structure.

Figure 7 summarizes the character manipulation functions
that are equivalent on the two systems.

17

/ .' ' . . • . ° . • • - . ..

* +----------------+--------------+--

I I I DATA TYPEII
I ISYMBOLIC +----------------------- I
I DEFINITION I NAME I ARGUMENT I RESULT I REMARK I
------ -------------- ---------- --------------------------
I and(al,a2) I IAND I Integer I Integer I Same I
------- ---------------------------- +-----------------------

I or(al,a2) I IOR I Integer I Integer I Same I :.
------- --- +

I eor(al,a2) I IEOR I Integer I Integer I Same I
4-------------+--------------+--------------+--------------------------
I Bitwise I NOT I Integer I Integer I Same I
I complement I BCMPL I Integer I Routine I P&E I
4.-------------+--------------4--------------+-------------------------
I al logically I ISHFT I Integer I Integer I Same I
I shifted left I I I I I
I a2 bits I I I I I

4--------------+--------------+--------------+-------------------------
I Extract bits I IBITS I Integer I Integer I Vax I
I a2 through (a2 , I I I
I - al - 1) froml I I I I
I al I I I I I

4--------------+--------------+--------------4-------------------------
I Return value I IBSET I Integer I Integer I Vax I
I of al with bit I BSET I Integer I Routine I P&E I
I a2 set I I I I I

4-------------+--------------+---------------+-------------------------1:
I Test bit a2 of I BTEST I Integer I Logical I Same I
I al to I I I I
I determine if I I I I I
I it is set I I I I I
4--------------+--------------+--------------+-------------------------
I Return value I IBCLR I Integer I Integer I Vax I
I of al with bit I BCLR I Integer I Routine I P&E I
I a2 clear I I I I I
4--------------+--------------+--------------+-------------------------
I Circularly I ISHFTC I Integer I Integer I Vax I
I shift I I I I I
I rightmost a3 I I I I I
I bits of al by I I I I I
I a2 places I I I I I
------- -------------- +----------------------------.---------+
I Load byte I ILBYTE I Integer I Routine I P&E I
------- -------------- +-------------------------------------
I Store byte I ISBYTE I Integer I Routine I P&E
4-------------+--------------+--------------+--------------------------W
I Clear byte I ICBYTE I Integer I Routine I P&E I
4--------------+--------------4--------------4-------------------------
I Complement I INBYTE I Integer I Routine I P&E I
I byte I I I I I
------- ---

Figure 6. Data manipulation functions.

18

I I DATA TYPEI
I I SYMBOLIC +----------+-------------+ I

I DEFINITION I NAME I ARGUMENT I RESULT I REMARK I
---------------- 4---

I Returns length I LEN I Char I Integer I Same I
I of the I I I . I
I character I I I I I
I expression I I I I I
-------------- +--------------+--------------4---------------------------

I Returns the I INDEX I Char I Integer I Same I
I position of a2 I I I i
I substring in I I I
I character I I I I I
I expression al I I I i I
+- -----.------------------------ --------------------------
I Returns the I CHAR I Logical I Char I Same I
I character that I I Integer I Char I Same I
I has al ASCII I I I
I value I I I I I
4--------------+--------------+--------------+-------------------------

I Returns the I ICHAR I Char I Integer I Same I
I ASCII value I I I I I
I that has al I I I I I
I character I I I I I
------ -------------- +----------------------------+---------+
I Character I LLT I Char I Logical I Same I
I relationals I LLE I Char I Logical I Same I IL
I I LGT I Char I Logical I Same I
I I LGE I Char I Logical I Same I
------- -------------- +--------------+--------------+---------+

Figure 7. Character manipulation functions.

19

.. .

2.2.4.1 Perkin-Elmer. Due to the standardization of the
ASCII character set, Perkin-Elmer can process the full set
of character manipulation functions. The suite of software
routines represents the gamut of current processing
techniques. Further, its set of capabilities is the same as
on virtually every other commerically available system.

2.2.4.2 V 1/ . The VAX system has no character
manipulation functions that are not standard. In fact, its OF
set of function offerings is exactly the same as the
Per kin-Elmer.

2.2.5 Language Extensions.

Although "language extensions" may or may not have a
definite meaning on a system, here we shall define language
extensions as those capabilities and features which are not
an inherent part of the FORTRAN 77 language but are
available to provide system management and configuration
control, maintain code integrity, and assist the programmer
in code development. These language extensions are very
powerful and exceedingly helpful, and potentially a major
hinderance to the transfer of code between systems.

The major difficulty with language extensions is that they
are highly machine dependent and are usually tailor-made to
take full advantage of the system architecture. There are
very few, if any, ways to automatically convert these
features. For general system configuration control and
integrity, some degree of language extensions will be used
on both systems.

Additionally, some systems have translators which will
convert FORTRAN code to FORTRAN 77 code. This is a nice
feature but it is not necessarily efficient nor particularly
useful. For example, almost all FORTRAN code can be
optimized by the system compiler. The resultant production
system is then developed to produce correct results with the
optimized code.

Processing this production code through a translator would
then convert this code into FORTRAN 77 code. On the new
system, this converted code might or might not be optimized
by the new compiler, but certainly not necessarily in the
same manner. The resultant production system then has two
potentially fatal hazards. The first is the automatic
conversion into FORTRAN 77 code. The second is the new --_-
generated object code.

20

2.2.5.1 Perkin-Elmer. Perkin-Elmer offers several
attractive language extensions. These include the following
items-

1. File inclusion ("$INCLUDE")

2. In-line assembly code -

3. In-line subroutines

4. In-line debug code

Each of these capabilities will be covered in the following
paragraphs.

File inclusion is the single, most powerful configuration 1T6
control device available. It allows the user to insert into
the code lines of source code from another file at the spot
where the "$INCLUDE" command is placed. This is of prime
importance for entities like common blocks and parameters.
This ensures that only one version of the code is available
and that only the current version is used within the system.

In-line assembly is probably the single most difficult
extension to back out and replace. This is so because the
assembler code has been written to handle a specific logic
sequence and there is no set way to replace it. At times, --
it may be easier to replace the assembler code with a new
subroutine call. Other instances may indicate that
elementary intrinsic functions can be used. In-line
assembly code will have to be handled on a case-by-case
basis.

In-line subroutines will be easy to replace. Instead of
loading the subroutine executable code directly into the
code, a normal branch can be effected and no system
degradation will occur.

In-line debug will, similarly, be easy to replace. On the
Perkin-Elmer, the indicator for debug code is "X". Each
line of code preceded by this indicator can be eliminated in

. the new source code. There will be no need, necessarily, to
transfer this code.

2.2.5.2 VAX 11/780. The VAX system allows two similar

language extensions. They are the following:

1. File inclusion (-INCLUDE-)

2. In-line debug code

These will be examined in the following paragraphs.

21

File inclusion on the VAX allows the user to insert into the
code lines of source code from another file at the spot
where, the "INCLUDE" command is placed. This should be used
for entities like common blocks and parameters. This
ensures that only one version of the code is available and
that only the current version is used within the system.
This will help system configuration control.

In-line debug may not really be needed on the VAX code.
There are two options available. One is to retain the debug
but convert its debug indicator symbol to that recognized by
the VAX system. The second is to convert the debug into a
"formatted text report" form that is controlled through
variables in the data base.

2.2.6 Input/Output Functions..

Input and output functions are, in general, standard on all . -

systems. However, there are always limits to their
capabilities. These usually involve the rate of data
transfer and the amount of data transfer. The math model
tends to be an input/output bound program as well as
requiring the writing of thousands of bytes of data every 60
seconds.

The writing of massive quantities of data requires a fine
balance between the number of I/O requests and the amount of
data that can be physically transferred. In this respect, a
single I/O transfer request is more efficient and quicker
than several requests. However, there is a limit to the
amount of data that can be transferred.

Custom written code which will transfer the maximum amount
of data per call is the usual solution. However, this code
needs to be rewritten on the new host machine to take
advantage of its architecture.

2.2.6.1 Perkin-Elmer. The Perkin-Elmer system allows data
to be written in groups of 512 byte records. However, the
total number of groups written at any one time is less than --
the actual number of bytes to be written by the model. It
is assumed that utility input and output routines have been
developed for use on the Perkin-Elmer system.

These utility routines can be used as the basis of similar
routines written for the VAX system. It will be fairly -
straightforward to do this and locate the appropriate places
for their calls.

2.2.6.2 VAX ll/780. The VAX system has its files organized
around 512 byte blocks. It also only allows the writing of
approximately 32,000 bytes at a time as a maximum. To allow
the transfer of larger amounts of data, user written and

22

. -°..,

"..

- - -r-' r....rr r rr r~r-

developed code can be generated that will automatically

handle these larger amounts of data.

2.2.7 Assessment. ,

The purpose of this section is to illuminate discrepancies
between the Perkin-Elmer and VAX 11/780 machines and to
indicate the recommended solution to those discrepancies. .

2.2.7.1 Constructs. In general, the constructs of ..
FORTRAN 77 are the same on both machines. Mild variations
are expected but should cause no major difficulty. Any
differences and anomalies will be addressed on a
case-by-case basis.

2.2.7.2 Intinsi Functions. As shown in Figures 2 through IM
5, the intrinsic functions available on both systems are the
same. This means that the calling arguments, default
values, and error conditions are the same. There are no
expected problems with intrinsic functions.

2.2.7.3 Data Manipulation Functions. Figure 6 summarizes
the data manipulation functions. There is a wide
discrepancy among the types of routines and their
capabilities. However, the symbolic names used on the
Perkin-Elmer system will be retained on the VAX system.
Only the underlying code will be altered on the VAX.
Further, this code will not be transferred back to the WW".
Perkin-Elmer system since it already exists and functions
correctly there.

2.2.7.4 Character Manipulatio Functions. These functions
should prove to be among the easiest codes to be converted.
These functions should present minimal, if any, problems.

2.2.7.5 Language Extensions. Both systems have functionally
similar but different implementation of these functions. A
commonality will need to be decided on and a utility routine
implemented to accommodate format differences.

2.2.7.6 I F_ in The majority of
input/output capabilities are the same. However, for
certain specific areas, a new code will need to be written
that will be tailored for each machine. This will
necessitate two versions of the same code running on the two
machines, but they should not need to be altered once they
are finally operational.

2.3 ASSEMBLY/MACHINE LANGUAGE.

Assembly language is, by definition, code which is written
in machine language. It is, therefore, machine dependent
and not transferable.

23

: '- : -,' -' • --. .' " -- .' '. : , ." .' -: i 'i' 'i .- ", i' •' -: .° : / . " " . . : " ", - ', . . .- - ". . " . ": . .

77i

2.3.1 Perkin-Elmer.

The Perkin-Elmer system allows for users to write and
develop assembly language code. It is foolish to expect
that no assembly language code has been written. In
reality, it is a question of the function, how much, and the
complexity of the code that was implemented that will
dictate the ease of the transfer.

The Perkin-Elmer system also allows the user to include
in-line assembly code into a FORTRAN program. These
sections of code will be difficult to replace. In general,
these sections of code will be replaced with the appropriate
data manipulation routines (see Section 1.2.3). However,
this will not always be possible, and for these instances
the logic will be replaced with subroutine calls. -

2.3.2 VAX 11/780.

The VAX 11/780 system also allows for users to write and
develop assembly language code. Any required assembly
language code can be developed and made to perform the same "
function as it did on the other system.

2.3.3 Assessment.

Assembly language code is nontransferable. However, once
its function can be ascertained, new code can be written to
replace it on the VAX. In addition, it may become evident
that a new FORTRAN code, generalized for both systems, could
be implemented to reduce the amount of assembly language
code. Further, any assembly language code should be placed
into libraries resident on the specific machine and not be
considered as part of the transfer.

2.4 INPUT/OUTPUT.

Input statements provide the means of transferring data from
external media to internal storage or from an internal file
to internal storage. Output statements provide the means of
transferring data from internal storage to external media or
from internal storage to an internal file.

Many I/O statements have a list of entities called an I/O
list that follows the list of the I/O specifier. In input
statements, these entities become defined with values read
from records. In output statements, the values of these
entities are written in records.

In addition to the statements that transfer data, there are
auxillary input/output statements to manipulate the external
medium, or to inquire about or describe the properties of
the connection to the external medium. "

24

r

- . - . . -. .. ,.4

All of these input/output conventions are covered by
FORTRAN 77.

2.4.1 File Management. w-
File management concerns itself with the maintenance,
updating, and general management of all files. This is an
operating system function and not a programming --.
consideration. As such, it is independent of FORTRAN 77
standardization and is not transferable.ho
2.4.1.1 Perkin-Elmer. On the Perkin-Elmer system, input
statements can read data from external files, devices,
internal files, or buffers and transfer it to internal
storage. Output statements write data from internal storage
to external files, devices, internal files, or buffers.

The Perkin-Elmer operating system supports both indexed and
contiguous file types. Accessing these file types can be
performed by direct, random, or sequential methods. In
addition, temporary or scratch files can be used and will be
deleted immediately upon completion of the program which
created them.

The Perkin-Elmer file manager system has a standard set of
protocol for the management of permanent files. These
include the creation, assignment, and deletion of any
identified file. These are all standard capabilities for P
f ile management.

The Perkin-Elmer system fully supports the FORTRAN 77
standard.

2.4.1.2 .VAX11/780. On the VAX system, input and output
statements translate data from internal (binary) form to
external (readable character) form, or vice versa. The VAX
operating system further supports sequential, direct access,
indexed, and internal I/O.

The VAX file management system also has a standard set of
protocol for the management of permanent files. These
include the creation, assignment, and deletion of any
identified file. These are all standard capabilities for
f il e management.

2.4.2 File Organization.

A file is a collection of logically related records that are
arranged in a specific order and treated as a unit. The
arrangement or organization of a file is determined,
usually, when the file is created. There are three types of
file organization. They are sequential, relative, and
indexed.

25

-V
b.r

Records in a sequential file are ordered in physical
sequence. Each record, except the first, has another record
preceding it. Each record, except the last, has another
record following it. The physical order in which the -
records appears is usually identical to the order in which *

the records were originally written to the file.

Records in a relative file consist of a specified number of
fixed-length cells ordered in physical sequence. These
cells are numbered from 1 (the first) to N (the last). Each P.
number represents the location of a record relative to the
beginning of the file. Each cell either contains a single
record or is empty. The cell (record) number is used to
refer to specific records in the file.

Records in an indexed file are ordered by fields in the
records called keys. A key is a data field in the record of
an indexed file. When the indexed file is created, a field
within the file's record is determined to be the key. The
contents of these fields are then used to identify specific
records for subsequent processing. The length of a field
key, and it's relative position in the record, are identical
for all records in the file.

There is at least one key for an indexed file. This
mandatory key is called the primary key of the file, and has
a unique value for each record. Other keys may be defined
and are called alternate keys. An alternate key consists of
a field that is held in common by, and located in the same
position in, each record in the file. Both primary and
alternate keys may be used to identify a record for
retrieval. An alternate key does not need to have a unique
value in each record.

Access mode is the method a progran uses to retrieve and
store records in a file. The access mode is specified as
part of each I/O statement.

File organization is directly linked to auxiliary I/O
statements. These statements open and close files, specify
the attributes of the file, determine or change the way a
file or unit is assigned, reposition a file to a previous
record, or write endfile records.

Figure 8 shows the various types of FORTRAN 77 I/O
statements and Figure 9 shows access modes for each file .
organization on the two systems.

2.4.2.1 Perkin-Elmer. As shown by Figure 8, the
Perkin-Elmer system supports the FORTRAN 77 specification as
far as file organizations are concerned.

26

i r
~.. .,.-§.> .. >,- .*.: ..- +i.. ..

+9.- '- +

I STATEMENT CATEGORY I
I ------------- +----------------------------

I FORTRAN 77 I SEQUENTIAL I DIRECT I INDEXED I INTERNAL I
I STATEMENT +-----------------------------+--------------+
I NAME I F L U IF L U I F L U I F L U I

.---------------------------- +-------------+---------------------------

IRead I X X X X - X I X - X I X - - I
Write I X X X IX - X I X - X I X -- I

IRewrite I I X - X I- - - I
IAccept I X X - I----- - ---
IType I X X -- -I - -- ----
I Print I X X - ...----- -I -----

-+-------------------------------------- --------------
Notes: 1. "F" denotes formatted.

2. nL3 denotes list-directed. b.-
3. "U" denotes unformatted.

Figure 8. Available I/O statements.

I I ACCESS MODE I
I FILE --------- -----------------------
I ORGANIZATION I SEQUENTIAL I DIRECT I KEYED I

-+--.--------------------------------------
I Sequential I Yes I Yes (1) I No I
I Relative I Yes I Yes I No I
I Indexed I Yes I No I Yes I
.----------- +----------------- .9---------------------------

Notes: 1. Records must be fixed-length.

Figure 9. Access modes for each file organization.

27

-

. . .
.

2.4.2.2 VAX 11/780. As shown by Figure 9, the VAX system
also supports the FORTRAN 77 specification as far as file
organizations are concerned.

2.4.3 Assessment.

FORTRAN 77 file management and organization provides a
structured manner in which to manipulate data files. Both
systems fully support the file characteristics specified by -:
FORTRAN 77. There should be no difficulty in transferring ML, ,4
this type of FORTRAN code. In fact, there should be no
changes at all to any file manipulation FORTRAN code in the
transfer of the ARTBASS code.

2.5 EXECUTION.

An executable program is a collection of program units that
consist of exactly one main program and any number,
including none, of subprograms and external procedures. The
running of the executable program is called execution.

During execution, executable statements in the program units
are implemented and executed in the order in which they
appear. Execution of an executable program begins with the
execution of the first executable statement of the main
program. When an external procedure specified in a program
unit is referenced, execution begins with the first
executable statement that follows the FUNCTION, SUBROUTINE,
or ENTRY statement that specifies the referenced procedure
as the name of a procedure.

This section discusses the implementation of program
execution on the two systems. In particular, overlays,
tasks and processes, and task communication are discussed in
the light of how they facilitate the program execution.

2.5.1 Perkin-Elmer.

2.5.1.1 Overlays. The Perkin-Elmer system provides a means
to execute a program in an area of main memory that is not
actually large enough to contain the entire task at one
time. The program linker is used to divide such a program
into nodes, a collection of modules and common blocks, which
are loaded as needed. Only one node, the root, must remain
in main memory throughout the execution of the program. The
other nodes reside on, and are fetched from, disk when
needed.

To ensure the integrity of the overlayed program, an overlay
structure must be carefully designed. This structure is a
tree structure that shows which nodes of a program occupy

28

-,

the same main memory at different times. The main routine

must reside in the root node throughout the execution of the
task.-

The Perkin-Elmer OVERLAY command specifies the start of a
node and the node's relative position within the tree -
structure. In addition, any run-time library files can be
specified so that remaining entry points can be resolved. .-...

Each node has a fixed length in bytes. The total size of a
task depends on both the routine composition of each node
and the structure of the overlay tree. An overlay structure
can be represented by a set of parallel paths. A path can
be defined as a particular set of nodes with one at each
level, and each of which is a descendent from the previous
level.

Therefore, the total size of a task is determined by the
path whose node size adds up to the greatest number of
bytes. Normally, by using the cross reference map from the
linker, a manually created call-tree representation of a
program can be generated as an aid in determining the
smallest possible task size.

Normally, the placement of a common block or global block
within an overlayed task is determined by where the block is
referenced. Blank common is always positioned in the root.Named common and global blocks are initially positioned by

the linker no closer to the root than any particular
reference to the block.

There are two consequences to this positioning scheme. The
first is that named common and global entities are
initialized every time the overlay is fetched from disk.
The second consequence is that two or more overlays can have
their own separate and private copies of a common or global
entity. These copies could then contain different values.

In addition to common blocks and global entities, implicitly
saved local entities are also affected by overlaying a
program. Suppose a program containing an implicitly saved
local entity depends on the value of that entity to remain
unchanged between invocations. The value of that entity is
well defined at one point during the program execution, but
becomes undefined at another.

2.5.1.2 Task and Process Development. The normal program
development procedure is divided into three sections, each
representing the three processes required to develop a
program. These three processes are COMPILE, LINK, and
EXECUTE.

29

COMPILE inputs the source code file to the compiler, starts
the compilation, outputs a source listing, checks for
compilation errors, and outputs the resultant object code if
no errors have occurred. LINK converts the object code
produced by the COMPILE process into a task image. It also
outputs a link map, checks for link errors, and outputs the
executable image to the task image file if no errors have
occurred. The EXECUTE process loads the task image,
executes the task and outputs the task results. p

2.5.1.3 Task Communication. At this time, the form of the
intertask communications used for the ARTBASS-M code on the
Perkin-Elmer system is not known.

2.5.2 VAX 11/780.

2.5.2.1 Overlays. The VAX 11/780 uses the Virtual Memory
System (VMS) operating system. The VMS system is a virtual
memory management system and as such it has no program
overlay capabilities.

2.5.2.2 Task and Process Deelp_ n. The VAX normal
program development procedure is divided into four sections,
each representing the processes required to develop a
program. These four processes are EDIT, FORTRAN, LINK, and
RU N.

The process of EDIT is the editing of the source code which
is resident in a program file. This is what the programmer
does to create and alter the source program in order to make
it operate correctly.

Following the editing of the source code, the program is
compiled. The FORTRAN command inputs the source code file
to the compiler, starts the compilation, outputs a source
listing, checks for compilation errors, and outputs the
resultant object code if no errors have occurred.

Next, the object code(s) need to be linked to form the task
image. LINK converts the object code produced by the
FORTRAN process into a task image. It also outputs a link
map, checks for link errors, and outputs the executable
image to the task image file if no errors have occurred.

The RUN process loads the task image, executes the task and *

outputs the task results.

2.5.2.3 Task Communication. The VAX system offers several
features to facilitate the communication interfaces between
tasks. These features can also be used in conjunction with
each other. Figure 10 lists the features available.

30 -.-.

riJ

...............-............... ,-_ i -".. i-- •.- -- -''''--".-.-i_.-ii':'_ °.,''-2'. - ' -- -''-;

W- -7 7- 7+F

IAVAILABLE FEATUlRE I DESCRIPrION OF MAIN USE
--------------------- +---U

I Common event flags I Notify process of event
I I completion; synchronize access toI

a resource.I
4--------------------+---

I Mailboxes I Pass messages or other data
I I between processes.

4----------------------+---

I AST service routines I Execute desired routine inI
I I response to an external event, I

I regardless of when the event
I occurs.

--------------------- +---

I Hibernation and I Activate subprocesses andI
I suspension I detached processes only when they I

I are needed.
4----------------------+---

I Global sections I Share data or code.I
4---------------------+--

I Sharable images I Share data or code.
4----------------------+---

Figure 10. VAX communication, synchronization, and
sharing features.

31

The difficulty with using these features as provided is that
they are also used by the VAX system. Consequently, certain
ranges of features are not available for user application
use since they are reserved for system communications,
synchronization, and sharing. Therefore, the full gamut is
not really available.

2.5.3 Assessment.

2.5.3.1 Overlays. Overlay structures, if used on the
Perkin-Elmer system, will not be a problem to unravel. On
the VAX system, overlaying is not supported. All
appropriate common blocks and data entities will be located
either in the main program or at an appropriate level
determined by the linker.

The only potential difficulty will be in the restoration of
the VAX data structures onto the Perkin-Elmer system. This
can be minimized by the use of linker commands that force
the location of common blocks in relationship to main
memory.

At this time, the use of overlays for the ARTBASS-M code on
the Perkin-Elmer sytem is not known. However, if no
overlays are used, then the problems mentioned here become a
moot point.

2.5.3.2 Task and Process Develoment. Both the Perkin-Elmer
and VAX systems allow the same types of developmental
processes. What should be developed is a command file that
will automatically compile all of the required source code
program files, and then link them together to create the
executable image. As an option, this automatic command file
might also begin the task execution.

If the automatic command file does not have the task
execution command, then one should be available as a
stand-alone command. Figures 11 and 12 show representative
automatic task creation command files.

2.5.3.3 Task Communication. Real-time implications often
consist of related programs running as several processes.
These processes may be detached processes, or detached
processes with one or more subprocesses. These processes
usually need to communicate with each other and share common
data or code. .

The symbolic names used by the ARTBASS-M code will be
retained on the VAX. The code will, however, be altered on
the VAX to conform to VAX system architecture. This new
code will not be transferred back to the Perkin-Elmer system
since it already exists on that system and it executes -
correctly. This function will probably be the most
difficult to convert on the VAX.

32

p . . , _-

- --- - --

I PROCESS DESCRIPrION I OPERATING SYSTEM COMMANDS I
-I----------------------------+-------------------------------------- .
I Load the compiler I LOAD F7D,30

I I ASSIGN 1,@1.FTNI
I I XALLOCATE @l.OBJIN,126/2 I
II ASSIGN 2,@l.OBJ
I I XALLOCATE @l.LST,IN,132/2 I

ICompile source ASINI@.S START f@2I
I I $IFG 1

I $WRITE COMPILATION ERRORS I
I I $CLEARI
I I $ENDC

4----------------------------+-------------------------------------
I Delete old executable I XDELETE @l.TSKI

I I ~XALLOCATE @l.tIAP,IN,132/2 I
IBuild linker commands I$BUILD LINK.CMDI

I I ESTABLISH TASK
I I MAP @1.MAP, ALPHABETIC, I
I I ADDRESSIXREFI

I I OPTION FLOAT,DFLOAT,I
I I WORK=(COO,COO), I
I I SYSSPACE=FFFFI

I I INCLUDE @l.OBJI
II SHARED GLOBAL

I LIBRARY F7RTL.OBJ/SI
I I BUILD @2.TSKi
I I ENDI
I I $ENDBI

I Load linker I LOAD MTM:LINK/S,20I
-- I Link the object code I START, COMMAN D- LINK. CMD, I-

II LOG-CON:
I I $IFNEO 0
I I $WRITE LINK ERRORSI
I I $CLEARI
I I $ENDCI

4 -- -- -- -- -- ---------- - --- -- -- 4- -- -- -- -- -- -- -- -- -- -- -- -- -- -- - - - - -
1 Load the executable I LOAD @l.TSK

I I ASSIGN l,fileI

I Assign all files I

I I ASSIGN n,fileI
I Run task image I START
4-------------------------+--4-

Figure 11. Perkin-Elmer task and process development
command file.

33

---- - I . - - - - - -.

IPROCESS DESCRIPTION I OPERATING SYSTEM COMMANDS I __

II $OPEN/WRITE NWUT SYS$OUTPUT I
I open input file I $OPEN/ READ FILES 1P1' I
I Read source code file name I $GET: READ/END_OF_FILE-DONE I

I I FILES NAMEI
II $WRITE NOJT NAME

IDelete old object I $DEL O:INAMEI.OBJ;*
I Delete old listing I $DEL L: INAME I. LIS;I
I Compile source I $FORTRAN 5: 'NAME'-I

I I /OBJECT-O:NAME'-I
I I /CONTINUATIONS-75
II $GOTO GETI
I I $DONE: CLOSE FILES 37

II $CLOSE NcXJTI
----- ------------- +-------------------------------------
I Delete old executable I $DELETE O:MODEL.EXEI
IDelete old link map I $DELETE O:MODEL.MAPI
I Link I $LINK/FULL/MAP-O:MODELI

I /EXECUTABLE-O:MODELI
I I S:MODEL/OPTIONSI

4 *---------------------------+-------- ------------------------------
I Run task I $RUN O:MODEL.EXEI
----- ------------- +-------------------------------------

Figure 12. Vax task and process development
command file.

34

2.6 COMMAND LANGUAGE.

The system command language is a set of commands that "W.

provide the following functions:

1. Interactive program development.• , -. ' ,"!

2. Device and data file management. ,

3. Interactive and batch program execution and
control.

These functions are intended for all users of a system,
including application programmers, system programmers,
operators, and managers.

2.6.1 Perkin-Elmer.

The Perkin-Elmer system provides a set of command language
commands. The most important of these commands is the login
command which allows the user to access the system. This
involves some type of user name and a password. The system
then validates that the user is authorized to use the
system.

The Perkin-Elmer system then provides an operating
environment once it is ready to accept commands. This
environment has various characteristics associated with it,
among which are the following:

1. An account number,

2. A user identification code,

3. A default disk device and directory name,

4. Default devices for input, output, and error
streams,

5. A set of privileges and resource quotas, and

6. A command interpreter.

These characteristics are unique to each user.

Commands consist of English language words that describe
what the system is to do. Commands can optionally be
modif ied.

Using these commands, the user can create, access, and
update data files and programs. The Perkin-Elmer system h-_

35

- ° - -° . • - , °. . . ' ° " - ' . ° " °. • • ... - . -.-.. . . . , . . . o . , . ,.- •. . ° , ° ... J .

.' a . .-" " ' - .-' .L' .. ' ' -. ' : - . " "* "'"" • " " ' " " . . " -• " '

provides the access and control capabilities that are called
for by the commands.

The Perkin-Elmer operating system provides concurrent
time-sharing multiprogramming and batch job processing. As
part of its programming environment, the Perkin-Elmer system
provides the following:

1. Commands for program development,

2. Debugging programs,

3. Traceback information, and

4. Exit and condition handlers.

2.6.2 VAX 11/780.

The VAX system provides an extensive set of DCL (DIGITAL
Command Language) commands. The most important of these
commands is the login command which allows the user to
access the system. This involves a user name and a
password. The system then validates that the user is
authorized to use the system.

The VAX system provides an operating environment when it is
ready to accept commands. This environment has various
associated characteristics. Among which are the following:

1. An account number,

2. A user identification code,

3. A default disk device and directory name,

4. Default devices for input, output, and error
streams,

5. A set of privileges and resource quotas, and

6. A command interpreter.

These characteristics are unique to each user.

Commands consist of English language words (generally verbs)
that describe what the system is to do. Commands can
optionally contain qualifiers and parameters. Qualifiers
modify a command and provide additional information on how
to execute the command. Parameters describe the object of
the command. In addition, commands may be placed into files
and the entire file interpreted as a single command. p:

36
- '-..

a - i""-'"

Using DCL commands, the user can create, access, and update W .

data files and programs. The VAX Record Management Services
(RMS)-provide the access and control capabilities that are
called for by the DCL commands. Further, files can be 6
defined and accessed from within programs by using RMS or
the input/output services of the VAX/VMS operating system
directly.

The VAX operating system provides concurrent time-sharing
multiprogramming and batch job processing. As part of its
programming environment, the VAX system provides the
following:

1. Commands for program development;

-$EDIT

- $ FORTRAN

- $ MACRO

-S$ LINK _

RUN

2. Debugging programs;

- Local symbol table information, .

- Global symbol information, and

- Traceback information.

3. Exit and condition handlers.

2.6.3 Assessment.

No assessment can really be made here. Command language is
a system dependent capability. Since both systems are
interactive systems, they have the same features. What
differs is the implementation of those same features and. .
capabilities. Since neither command language can be
transferred to the other system, all that can be said for --

either system is that their command language is adequate for
the type of work to be performed.

2.7 CODE UNIFICATION.

After the ARTBASS-M becomes operational on the VAX system .'"':
and regular development commences, it is recommended that

37

r , ; r T r r .-,.- -- ,.

new, general p~rpose service routines be developed. These
routines should be in the following functional areas:

1. Data manipulation

2. Character manipulation

3. Task communication

There are several reasons for this code unification. First,
it will provide a commonality of source code on both
systems. Second, the maintainability of the code will
increase since the programs will be the same on both
systems, thus eliminating the burden of the same function
being performed by two different sets of code. Third, the h
integrity of the code is ensured as much as possible.
Fourth, system configuration control is centralized onto one
system.

The following sections outline the functions and
capabilities of these general service routines.

2.7.1 Data Manipulation Functions.

I is recommended that instead of using the system routines
provided, the following set of general purpose routines be
implemented:

1. Cltar bit . - .

2. Set bit

3. Test bit

4. Put field

5. Get field

6. Address retrieval

These will be explained in the following paragraphs.

The clear bit routine (OCALL CLRBIT(al,a2)0) will clear the
al-th bit in source a2. The set bit routine (OCALL
SETBIT(al,a2)0) will set the al-th bit in source a2. The E.--
test bit routine (ITSTBIT(al,a2)) will return the value
Ofalse" if the al-th bit of source a2 is not set, and the

value "truea if it is set.

Any requirements for bit, byte, or halfword placement or
extLaction as well as bit shifts should be replaced with the
general purpose routines to get or put a field. The

38

mu77

-7-. e-

rationale for this is to provide more flexibility between
the two systems, better data packing management schemes, as
well as providing, potentially, a faster algorithm.

The put field routine (OCALL PUTFLD(al,a2,a3)0) will place
al bits starting at bit position a2 in source a3. The get
field routine will consist of two versions, a signed and , ..
unsigned version. The signed get field routine
(OIGTFLS(al,a2,a3)0) will extract al bits starting at bit
position a2 in source a3, and it will sign extend the
result. The unsigned get field routine ("IGTFLU(al,a2,a3)0)
will extract al bits starting at bit position a2 in the
source a3 and zero extend the value.

The address retrieval routine (OIADRES(al)") will return the
starting address in memory of al.

All of these routines will be written in assembly language.
There will be a single set of routines for the VAX and a
corresponding set for the Perkin-Elmer system. All routines
will, therefore, be working with data word formats
constructed as usual on the respective system. All returned
values will also be appropriately justified for the
particular system. They would all reside in libraries which
would not be transferred between the two systems.

2.7.2 Character Manipulation Functions.

A standard set of routines should be provided to work on
both machines without degradation of performance. The
following types of routines will need to be provided:

1. Copy character data

2. Binary-to-ASCII data conversion

Character data should be transferred between words by use of
the move character function. This function ("CALL
MOVE(al,a2,a3,a4,a5)0) will copy al characters starting at
position a2 in string a3 into position a4 of string a5. B.

The binary-to-ASCII conversion routine (nCALL
BINASC(al,a2,a3)") should convert to a decimal equivalent
the binary integer al into an ASCII character string a2 "
characters long. If the logical value a3 is set to "true',
the character string will include leading zeroes. If set to
Ofalse", leading zeroes will be suppressed.

2.7.3 Task Communication.

Real-time applications often consist of related programs
running as several processes. These processes may be

39

- - - - - - - - - - - -- - - - - -- , -..

-v - C' -" " -"

detached processes, or detached processes with one or more
subprocesses. These processes usually need to communicate
with each other and to share common data or code.

Interprocess communication often consists of event
notification, although it can also involve transmission of
messages or other data. Processes within an application can
synchronize their operations through effective
communications. Processes can also share code or data to
reduce the application's physical memory requirements.

Since neither system provides the type of intertask
communications that is really an industry recognized
standard, an acceptable scheme should be generated. In
addition, a readily transportable scheme is required.

The Semaphore Utility routines should provide a set of task
synchronization primitives. This will synchronize a global
resource that is shared between two asynchronous tasks,
since problems can occur if both tasks try to access (one to
read and one to write, or both to write) the same global
area.

To alleviate this problem, the two tasks can consider the
global area as a nonsharable resource. Whenever a task
wants to access the area, the task requests its exclusive
use. When this exclusive use is granted by the operating
system, the area can be processed as -desired. k.

When the task is finished with the area, it signals the
operating system that it is through with the resource so
that another task may use it. This type of mechanism uses
one preassigned global event flag for each resource.

An interprocess queuing system should also be provided.
This set of routines will maintain the interprocess queues. .-
It allows the user to place an item on one of the queues,
read it independently of its position on the queue, get the
queued item, and remove the item from the queue. This
system will also maintain a map of allocated blocks in
secondary storage associated with the queue file.

F.

IFI

40

r i

. . ..- ..- u* . . .L•- -*.*.

SECTION 3
ARTBASS-M CODE TRANSFER PROCEDURES

This section deals with the physical transfer of ARTBASS-M
code from the Perkin-Elmer to VAX and vice versa. There are
two basic ways to perform this task. One way is a hardware
lash-up between the two systems. The second is to transfer
code by means of magnetic tape.

The hardware approach would entail the connecting of a cable
between the systems. Although feasible, this approach is
not advantageous. There are several reasons for not using
this approach.

The first reason concerns itself with the frequency of code
transfers. In theory, there will be only one transfer of
code from the Perkin-Elmer system to the VAX system. Code
transfer from the VAX to the Perkin-Elmer system will not
necessarily be done on a frequent basis. It would be
expected that any VAX to Perkin-Elmer transfer will be I.
accomplished every three to four months. This is not
frequent enough to justify a hard cable connection between
the systems.

The second reason concerns itself with the speed and volume
of data to be transferred. It is expected that
approximately 35,000 lines of code will be transferred
between the systems roughly four times a year. It will take
an hour or less to transfer all model code. This level of
speed and volume is not enough to justify a cable connection
between the systems.

The third reason concerns itself with the cost,
installation, and maintenance of the connection.
Disregarding cost, which is an unknown quantity, the
installation and maintenance of the connection is
potentially a very time consuming task as well as being
costly in the long run. This also does not justify a
hardware connection between the systems.

Based on the above considerations, it is recommended that
all data transfers between the Perkin-Elmer and VAX systems
will be accomplished by tape. The remainder of this section
will discuss the actual mechanics of the transfer between W

the systems.

3.1 FORTRAN TRANSFER.

41

- -. °.. .

3.1.1 Perkin-Elmer to VAX 11/780.

The initial transfer of Perkin-Elmer resident FORTRAN code
to the VAX will include all math model code, support code,
and all necessary files. In addition, compilation listings,
link load maps, and any necessary support listings will also
be made available for the conversion work to be accomplished
on the VAX.

The transfer to tape will use the Perkin-Elmer "COPY32"
system utility. A VAX compatible blocksize will be
specified. Each record of source code will be 80 bytes in
length. The file blocksize and record length will, of
course, be adjusted appropriately for different types of
files other than source code files.

3.1.2 VAX 11/780 to Perkin-Elmer.

Examination of the Perkin-Elmer FORTRAN VII User Guide
manual and the FORTRAN VII Reference Manual indicates that
the VAX FORTRAN 77 is basically a subset of the FORTRAN 77
used by the Perkin-Elmer system. This will greatly
facilitate the VAX developed ARTBASS-M code for its
implementation on the Perkin-Elmer system.

As mentioned above in Section 1.2, the maximum amount of VAX
system capabilities should be utilized. This will include
the use of the "INCLUDE" and "PARAMETER" features. Since
the Perkin-Elmer system does not support these features as
implemented on the VAX, a program will be developed which
will convert the VAX "INCLUDE* or "PARAMETER" format into
the Perkin-Elmer format before writing the source to the
transfer tape.

The source tape thus created on the VAX system will have the
complete source code as well as the appropriate support
features of "INCLUDE" and OPARAMETER". A program will also
be written for the Perkin-Elmer system that will read the
tape and place the source code into its respective files.

3.2 ASSEMBLY LANGUAGE TRANSFER.

3.2.1 Perkin-Elmer to VAX 11/780.

Because assembly language is system dependent, there will be r
no physical transfer of this code. Instead, assembler code
listings will be used to determine the function of the code.
This function will then be installed on the VAX. In some
instances, this code will be replaced by FORTRAN subroutines
to facilitate it's use on the two systems. In other
instances, new assembler code will be written to generalize p
the function for the two systems.

42 'I

L -.- 'i < ; L .- -: --. < ,
r • , . . . - , - • • . - . .

3.2.2 VAX 11/780 to Perkin-Elmer.

As mentioned above, assembler code will not be "transferred"
between the two systems. Functionally identical code will
be developed, however, to perform the same logic.

3.3 SYSTEM UTILITY TRANSFER.

3.3.1 Perkin-Elmer to VAX 11/780.

In general, wherever possible, system utilities will be used
to create tapes of source code and support files. These
system utility created tapes will be used to transport all
necessary entities to the VAX system.

As mentioned above in Section 3.1, some tailor-made utility
programs will be written to minimize the system feature
differences. These utility programs will be kept to a
minimum and be as general and simple as possible.

3.3.2 VAX 11/780 to Perkin-Elmer.

In general, special utility programs will be used to
reformat the VAX code so that it can be processed directly - -

by the Perkin-Elmer system. Further discussions of this are
in Sections 3.2 and 3.1 above.

3.4 SCENARIO DATA BASE PROCESSING.

3.4.1 Perkin-Elmer to VAX 11/780.

The transporting of data bases from the Perkin-Elmer system
will consist of copying the data to a tape. The copy
process will be performed by system utilities, without
formats. P,

Any programs that read data bases will be examined. If the
reads are by formats, the code can be transferred with no
changes. Unformatted data base reads, however, will need
special consideration. Where possible, general purpose - •
binary data read routines will be used.

3.4.2 VAX 11/780 to Perkin-Elmer.

Data base processing routines will be used on both systems.
These will be written in FORTRAN except where assembler
language is required to interface with system routines. The
assembler code will not be transferred, however, it's
functional equivalent will exist on the Perkin-Elmer system.

3.5 INPUT/OUTPUT TRANSFER.

43

3.5.1 Perkin-Elmer to VAX 11/780.

ANSI standard FORTRAN I/O processing will be transferred
directly from system to system. This includes READ, WRITE,
ENCODE, DECODE, PRINT, and TYPE statements. I/O that deals
with binary data transfer will be examined and transferred
where possible. Assembler language level I/O will not be
transfer red.

3.5.2 VAX 11/780 to Perkin-Elmer.

As far as possible, I/O processes will be retained and
remain the same on the two systems. However, if a process
can be generalized and meet the ANSI FORTRAN standard, the
old routine will be altered to make it more general.

Assembler language level I/O will not be transferred.

3.6 FRONT-END INTERFACE.

3.6.1 Perkin-Elmer to VAX 11/780.

The actual front-end interface is dependent on the
configuration of the interactive system. This will dictate
the format and contents of the shared memory data
structures.

Certain front-end interfaces will be invariant between the
two systems. These will be the event queuing system and the
event clusters. These will be handled as will the I/O code.
Namely, FORTRAN based code will be transferred as unchanged
as possible. Assembly level code will not be transferred.

3.6.2 VAX 11/780 to Perkin-Elmer.

Task communication, synchronization, and shared resources
will be standard on the two systems. Subroutine calls will
remain the same, but the underlying code may be different to
accommodate the particular system.

Since task communication, synchronization, and shared
resources are basically state-of-the-art, these functions
will remain unaltered. The implementation will most likely
be different on the two systems.

3.7 JOB INITIATION AND CONTROL.

3.7.1 Perkin-Elmer to VAX 11/780.

Job initiation and control is a system dependent feature.
There will be no transfer of this type of code. However, as
much as possible, command language files will be developed
that will automatically process files to be transferred to
the VAX.

44
" ..~ - 1 -

ri->

, " . • _ ' -. " -- 5- 7 --. -- " r .--. c -, .--.-- - w -'- - c' .r - .-. ".- .* - - -. - - -. -

For transferring back to the Perkin-Elmer system from the
VAX, a command file will be created that will automatically
read the VAX created tape, copy the programs to their
respective files, compile all of the programs, link the
resultant object code, and execute the ARTBASS-M math model.

3.7.2 VAX 11/780 to Perkin-Elmer.

As much as possible, command language files will be
developed that will automatically process f iles to be
transferred to the Perkin-Elmer system. In addition,
automatic files will be created for compiling, linking, and
executing the VAX ARTBASS-M code.

- -' . . . -.'..

. K
"

45"'

SECTION 4
FRONT-END ARCHITECTURE

4.1 INTRODUCTION.

The Front-End Architecture includes all hardware and
software modules that are part of the man-machine interface. P

This section describes the man-mach1ine interface for
Combined Arms Tactical Training System (CATTS), ARTBASS-M,
NTC Test Support Driver and Mace. Each system's hardware
and major software modules are described.

4.2 HARDW:ARE.

The hardware description of each of the above systems
includes the host computers, color graphics devices, bit
pads, and alphanumeric terminals and printers.

4.2.1 CATTS.

CATTS is installed on a SIGMA 9 computer with 128k 32-bit
words of main memory, 3 disk drives, printer and 3 tape
drives. The computer supports three control stations:
threat, maneuver, and fire support. The hardware to support
the three control stations includes:

1. 1 SIGMA 9 computer

2. 1 Ramtek GX-100 color graphics processor

3. 3 Color cameras and map boards

4. 4 Super Bee alphanumeric terminal

5. 1 Audio recorder

6. 1 Simulated RATT (teletype)

7. 3 Graph tablets and pens

8. 3 Control panels

9. 4 Conrac 190 color monitors 4

10. 3 TI printers

11I. 1 Large screen display

46

Ir

- -

The interaction of the computer hardware and the CATTS model
is shown in Figure 13.

4.2.2 ARTBASS-M.

ARTBASS-M is installed on two PERKIN-ELMER 3240s with shared
memory and one PERKIN-ELMER 3220. One of the 3240s runs the -i
math model, the other 3240 handles map and graphic displays
and the 3220 handles I/O for the graph tablet and the touch
sensitive keyboard. ARTBASS-M supports five control
stations: two maneuver, one threat, one fire support and
one admin/log. The system includes the following hardware:

1. 2 PERKIN-ELMER 3240 computers with shared memory - ,

2. 1 PERKIN-ELMER 3220 computer

3. 5 Lexidata 3400 color graphics processors

4. 8 Lexidata 190 color monitors

5. 5 Multifunction keyboards

6. 5 graph tablets and pens

7. 7 Alphanumeric terminals

8. 7 Control station printers

The interaction of the computer hardware and the ARTBASS-M
model is shown in Figure 14.

4.2.3 NTC Test Support Driver.

NTC Test Support Driver is installed on a Digital VAX
11/780. The math model can be interacted with from as many
control stations as exist in the NTC system. The hardware
at each control station is controlled by the LSI computer in
the De Anza color graphics processor. The following
hardware is required for each control station:

1. 1 De Anza VC23 color graphics processor

2. 2 VT-105 alphanumeric/graphic terminals

3. 1 Graph tablet and pen

4. 1 Control station printer

5. 1 Large screen display

47

4-)

Lp-i

'a

48-

o= 1.1. c I I

-J CA -

oc z Z La

*C%d CA ((C a

z

(Ai -j =W Aj-

La i wL

oJt
-i Z;0i-

400
z0 Lai Z4cc C

M CL C
co

-j CA 4c

P.- Lfj 83- r i Li=Q
CA cr CE

CD 40

I.

C=La

La0-

a 0.h

.. , . _. _ v~r-_- -_ - - .. - --, . -. -. ' - - --t. . -,, : w ' .-' , -. , - - -" , -,' f . . -- - . ' -

The interaction of the VAX 11/780 containing the math modelV- and the front-end system for each control station is shown

in Figure 15.

4.2.4 Mace.

Mace consists of six Corvus Concept microcomputers sharing a
20 megabyte hard disk. One Corvus microcomputer is the
executive of the system, one is a graphics preprocessor and
the other four are the processors for each control station. P.
The control stations include : 2 maneuver stations, 1
admin/log station and 1 support fire station. The control
stations and executive station include the following 2
hardware:

1. 6 Corvus Concept microcomputer (512KB) bir

2. 1 Corvus hard disk (20MB)

3. 1 Omninet disk server

4. 1 Corvus 8" floppy drive

5. 4 Sony video disk players

6. 1 Sony large screen display

7. 3 Sony 190 monitors hi

8. 5 Okidata microline 82A printers

9. 1 64K Microfazer serial-to-serial printer buffer

10. 4 8K Microfazer serial-to-serial printer buffers

11. 1 1/2" video cassette recorder

12. 4 Joysticks with interface

13. 5 Mouse with interface

The interconnection of the Mace equipment is shown in Figure

16.

4.2.5 Hardware Assessment.

In order to provide common modeling capabilities for ARTBASS
and NTC, it is necessary to have the man-machine interface
hardware of both ARTBASS-M and NTC. The hardware should
consist of one NTC-control station for compatability testing
and three ARTBASS-M stations for full model testing. The
front-end hardware should consist of the following items:

50
. - .

-- - -- -

7% T7v 5v vv w.W a. W ;- - --

4c) w, *A -j

0.-I 0

c0. U, J

4c 0

In In

L&~ULJ UA.
- ~ flui

U, w

I- S...
U, .-

Lb~d3S

V)~ 0.V
snivis

CDP,

CA4.4

vU

tI-

1udJ

51flL

LaJ

CC z

u M0

IJ I*: L*.J LUJ0 .

Ei -nLJ
A

....- 0- .n 0 00

Lz W .I 4L& LA D a
n- - . 09 j(

itLO LA c -f74 Z1

LA U.j AuU
:3S U.. -A

wl JC. tn ,
C3 r_4S

La- C: 0 :- 52

........(.

1. 1 De Anza VC23 color graphics processor

2. 2VT-125 alphanumeric/graphic terminals

3. 1 Hitachi graph tablet and pen

4. 3 Lexidata 3400 color graphics processor

5. 3 Lexidata 19" color monitors

6. 3 Multifunction keyboards

7. 3 Summagraphics graph tablets and pens

8. 3 Perkin/Elmer OWEL 1251 alphanumeric terminals

9. 3 Control station printers

The interaction of the model and the De Anza is shown in
Figure 17. and the interaction of the model and the
Lexidatas is shown in Figure 18.

4.3 SIMULATION CONTROL.

The simulation control includes all controller actions
necessary to start, stop, freeze or replay the model. Each
system uses a different mechanism to interact with the
controller for simulation control.

4.3.1 CAT'IS.

The CATTS math model is controlled by the simulation control
switch on the control panel of the principal control
station. Any of the three control stations can be
identified as the principal controller at start up time.
The control switch is used to step through initialization
and to display the simulation control menu during the
exercise. The simulation control menu provides the
following functions:

1. Reinitialize

2. Replay

3. Restart

4. Terminate exercise

5. Freeze exercise

53

-: - -. '-~ . * ..- - *

-: v V w-

L.W

41

IaI=

- oc

400

.- CD 0A

I= 0 -C(ac

-i a. h.U = c

-2 CdL

CL.

CL . L

a.c

Lu 01
ac L&w L.

0 i E =LJ -

4c ac

-l ..

454

. 5 - * -. . . \. . * . *

S S. . . .~ *- 54

wwrn~%

0- oC c j k
Li~S = I

wwr
CD CLCL

I ~-I~i.
CD ;l&'

w- ,La I w i
LA-J ZL CC

a-ea

c%.. 6r " C6

VI1 0D

vi. I--

LLa taLak

1

55

4.3.2 ARTBASS-M.

The ARTBASS math model is controlled by the simulation
control switch on the multifunction keyboard of the F
principal control station. Any of the five control stations
can be identified as the principal controller at start up
time. The control switch is used to step through
initialization and to display the simulation control menu
during the exercise. The simulation control menu provides
the following functions: .

1. Reinitialize

2. Replay
3. Restart

4. Terminate exercise

5. Freeze exercise

4.3.3 NTC Test Support Driver.

The Test Support Driver math model is controlled by the
simulation control menu. The simulation control menu is
displayed on the color monitor by selecting the simulation
control button on the master menu (graph tablet). The menu
is interacted with via the graph pen and color monitor and
provides the following simulation controls:

1. Initialize scenario

2. Save initialization

3. Save exercise

4. Save command and control

5. Begin exercise

6. Reinitialize same scenario

7. Reinitialize new scenario

8. Reinitialize interactive initialization

9. Replay exercise

10. Restart the exercise ...

56

bit

11 Terminate exercise

12. Terminate replicate

13. Terminate freeze

14. Freeze exercise

15. Replicate exercise

16. Produce end-of-game reports

The simulation control menu can only be executed from the
principle control station. The principle control station is
selected at start-up time.

4.3.4 Mace.

The Mace battle simulation is controlled by the Game Control
module. The Game Control module resides in the Executive
Control Station and is interacted with via an alphanumeric
interactive menu.

4.3.5 Simulation Control Assessment.

The simulation control for the common model should be
implemented in two ways. One should be identical to the
ARTBASS simulation control using the multifunction keyboards
on the three ARTBASS control stations. The other should be
implemented using an interactive master menu on the De Anza
and bit-pad for the NTC control station.

4.4 MAP DISPLAY.

The Map Display is the background map which is overlayed by
the military symbology. The types of map displays described
include video camera and map boards, 2-D digital maps, video
disk images and 3-D digital maps.

4.4.1 CATTS.

The background map display is produced by a video camera
aimed at a map board. Each control station is connected to
a separate camera and has a separate map board. The camera
position is controlled by a joy stick on the control panel
of each control station. The joy stick provides the
capability of moving the camera in any direction and zooming
in or out.

The background map video signal is mixed with the graphic
symbology signal produced by the Ramtek color graphics

-*device and displayed on the color monitor.

57

• ' " -i-

- " . ' .'" ; - " " ". ' ' .'.' ''. .'" " ' *

. -,,-'.-,. .,

4.4.2 ARTBASS-M.

The background map display for ARTBASS is a digital image of
the exercise area. The digital map can be displayed with
cross-country movement or vegetation background. Both
backgound types are generated from DMA digitized terrain
data and reflect the same terrain data that is used by the .
model for line of sight and cross-country movement speeds.
The background maps can be overlayed by any or all of the
following features:

1. Contour lines

2. Hydrography

3. Lines of communication

4. Grid lines

5. Labels

In addition to the terrain map, a terrain appreciation map
is available on three control stations. The terrain
appreciation presents a three-dimensional representation of
the terrain from a controller selectable location and
elevation.

The terrain map and the terrain appreciation are selected
via a combination of inputs through the multifunction
keyboard and the graph tablet.

4.4.3 NTC Test Support Driver.

The background map for the NTC Test Support Driver is a
digital image of the exercise area. The digital map can be
displayed with a cross-country movement background or a
shaded relief background. The cross-country movement map is
created from the same DMA data as the terrain database used
by the cross-country movement module; and therefore, the
map image displayed on the color monitor matches the terrain
used by the model. The shaded relief map depicts the
elevation of the terrain by shading the map image according
to a user selectable sun angle. Both map backgrounds can be
overlayed by any or all of the following features: :..

1. Contour lines

2. Built-up areas

3. Hydrography

5- 89

;- ~58 '"

r .

6%-.. , •

4. Lines of communication

5. Sun position

6. Zoom control ,F'7.

7. Map position scroll

8. Grid lines

9. Miscellaneous features

Any of the above features can be displayed with or without
the background map. The background maps are available in
six display levels. The display levels and features are
selected on the master menu using the graph pen and tablet.

4.4.4 Mace.

The background maps are stored as camera-produced images on
video disk. The map location and zoom level are selected by
the joy stick. The joy stick provides the capability to
move in the X or Y direction and to zoom in or out. A total ...

of six zoom levels are stored on the video disk.

The correct frame is retrieved from the video disk by
converting the inputs from the joy stick to a frame number.
The video signal from the video disk player is mixed with
the graphic display signal by the Syntec PGS graphic device
and displayed on the color monitor.

4.4.5 Map Display Assessment.

The map displays for the common model should be consistent
with the ARTBASS and NTC graphic devices (Lexidata and De
Anza). Since the interfacing with these devices is
completely different, there should be two sets of map images
and map display software. The ARTBASS map display software
should be used to display the background maps for the three
ARTBASS control stations and the NTC map display software
should be used to display the background map on the NTC
control station.

4.5 TACTICAL/OPERATIONAL MENUS.

The Tactical/Operational Menus provide the means by which
the controller inputs commands to the model. Most of the
interactive menus are displayed on the color monitor and
selections are made using the graph tablet. However some of
the menus are displayed and selections are made using an
alphanumeric terminal or multifunction keyboard.

LI

59

°- . - S. . - 5 7 ,.

A

4.5.1 CATTS.

Tacti-cal/operational menus are initiated by pressing the
button on the control panel that corresponds to the desired
action. The menu is displayed on the color monitor and ismanipulated using the graph pen. CATTS provides the

following interactive menus:

1. Activate units

2. Unit location

3. Maneuver control

4. Support fire

5. Direct fire

6. Air mission

7. Air defense

8. Preplanned mission

9. Control measures

10. Resupply

11. Weather

12. Task organization

4.5.2 ARTBASS-M.

Tactical/operational menus are initiated by selecting the
desired menu from the multifunction keyboard. mhe menu is
displayed on the color monitor and is interacted with via
the graph tablet and pen. The type of units displayed on
the menu is dependent upon button settings on the
multifunction keyboard. A menu can be ignored from the
graph tablet or the multifunction keyboard. ARTBASS
provides the following interactive menus:

1. Activate units

2. Unit location 7

3. Maneuver control

4. Support fire

6 I

"- " "'- -. '. "- '- '- " '." •. " . ". 5. • " ". X"". -" ." .'...-,- " " " 2I - -" .'"- t "= . A . ..' ." -'. * ',_ ,._-'. "'m.-a I

5. Direct fire

6. Air mission

7. Air defense

8. Preplanned mission

9. Control measures

10. Resupply

11. Weather

12. Alert routing

13. Significant event

4.5.3 NTC Test Support Driver.

Tactical/operational menus are initiated by touching the
button on the master menu with the graph pen that
corresponds to the desired menu. The menu is displayed on
the color monitor and is interacted with via the graph pen
and tablet. TSD provides the following interactive menus:

1. Activate units

2. Unit location

3. Maneuver control

4. Support fire _

5. Direct fire

6. Air mission

7. Preplanned mission

8. Obstacle

9. Control measure

10. Intelligence control

11. Resupply

12. Weather

61

. - -': -"....

13. Unit bin definition

14. Task organization

4.5.4 Mace.

The Mace interactive menus are displayed on the alphanumeric
display and are interacted with via the keyboard. The menus
available to a controller is dependent upon the type of .
control station. The following list shows the menus that
are available at each control station:

1. Executive

9 Control measures / obstacles

* Initialize units

* Set time

9 Simulation control -

2. Maneuver (1 and 2)

* Unit maneuver

* Air maneuver

e Unit engagement

3. Air/Fire

0 Artillery fire

, Air fire

4. Admin/Log

" Resupply

" Status reports

" Assessment reports

4.5.5 Menu Assessment.

To provide the capability to make changes to an interactive
menu and have it be included on both the ARTBASS and NTC

62

SAW-

station, only one menu system should exist. To stay
compatible with the Perkin-Elmer ARTBASS system, the ARTBASS
menu system is the only reasonable choice.

The Perkin-Elmer menu software can be directly converted to
work on the VAX ARTBASS control stations; however, the NTC
control station graphics processor has a horizontal pixel
resolution of 512 compared with 640 for the ARTBASS graphics
processor. To display the ARTBASS menus on the NTC control
station, the following changes must be made:

1. The Lexidata graphic display utilities must be
rewritten to work on the De Anza.

2. The time portion of the ARTBASS menu must be
removed when displayed on the NTC control station.
If the default time is to be changed, it can be -.
selected along with the done, repeat, and ignore
commands.

3. The rest of the interactive menu must be scaled
down by the graphic utilities to fit into 512
pixels.

The interactive menus will be initiated from the
multifunction keyboard on the ARTBASS stations and from the
master menu on the NTC control station.

4.6 SYMBOLOGY.

Symbology includes all graphic overlays on the map display.
It includes such items as unit locations, tactical
overviews, impacting fires and control measures.

4.6.1 CATTS.

The symbology is displayed on the color monitor once every
time-step for ground units and once every 15 seconds for air
units. The symbology is selected by pressing the buttons
corresponding to the desired symbols. The blue force
symbology is displayed in blue and the red force symbology ..
is displayed in red. The graphic display includes:

1. Unit direction of movement

2. Control measures

3. Engagement vectors

4. Air missions

63,.

. .--1 J A

. : .. -- . .------- . .- .-- _ _ -. --- ._ T - - - -~ . T --.-- ; .-. - . l j-. . t -" , , - ' . . - . -

- - --..-

5. Impacting f ires

-6. Smoke

7. Illumination

8. FEBA

9. Minef ields -

10. Obstacles and fortifications

11. Weapon systems

12. Sensors

13. Sensor coverage

14. Visually detected enemy units

15. Command posts

4.6.2 ARTBASS-M.

The symbology is displayed on the color monitor once every
time-step for ground units and once every 15 seconds for air
units. The symbology is selected from a menu on the
multifunction keyboard. The blue force symbology is
displayed in blue and the red force symbology is displayed
in red. The graphic display includes:

1. Unit direction of movement

2. Control measures

3. Engagement vectors

4. Air missions

5. Impacting fires

6. Smoke

7. Illumination

8. FEBA

9. Minefields

10. Obstacles and fortifications

64

..:.. ..-.• .-.- * .-... ,....-.......-.. .- .,......'.....-.-.....-.......-................-.- •....-......... .

11. Weapon systems

12. Sensors

13. Sensor coverage

14. Visually detected enemy units
15. Command posts

4.6.3 NTC Test Support Driver.

The symbology is displayed on the color monitor once every
time-step for ground units and once every 15 seconds for air
units. The symbology is also refreshed when the digital map
location or display level is changed. The control of which
symbology appears on the monitor is accomplished by
selecting the master menu buttons that correspond to the
desired symbology. The buttons are selected via the graph
pen and tablet.

The blue force symbology is displayed in blue and the red
force symbology is displayed in red. The symbology graphic
display includes:

1. Unit direction of movement

2. Control measures

3. Engagement vectors

4. Air missions

5. Impacting fires

6. Smoke

7. Illumination

8. FEBA

9. Minefields

10. Obstacles and fortifications

11. Local weather cells

12. International boundaries

13. Weapon systems

65

.1°r.•

14. Sensors

15. Sensor coverage

16. Visually detected enemy units

17. Command posts

4.6.4 Mace.

The Mace symbology is displayed by the Syntec PGS graphic
device. The selection of symbology to be displayed is
accomplished by an interactive menu on each control station
that has a color monitor. The following symbology can be
displayed:

1. Unit (area occupied; iconic display; tactical

overview; opcode)

2. Firing lines

3. Impacting fires

4. Air strikes

5. Control measures

6. Obstacles

The symbology for the blue units is displayed in blue and
the symbology for the red units is displayed in red.

4.6.5 Symbology Assessment.

To conform with the Perkin-Elmer ARTBASS, the ARTBASS
graphic display software should be used for the common model
on the VAX. The graphic software should not require any
changes for display on the ARTBASS control stations;
however, the graphic utilities and the map to pixel
conversion routines must be rewritten to work on the NTC
control station.

The graphic symbology selection will be done on the master
menu for the NTC control station and on the multifunction . . -

keyboard on the ARTBASS control station.

4.7 SIDE PANEL DISPLAYS.

Side panel displays inform the interactor of current model
time, map attributes, and model status. The side panel
displays are displayed on sections of the color monitor not
used by the map and symbology.

66

.........- .AA......."

4.7.1 CATTS.

CATTS does not have side panel displays on the color
monitor. The only item displayed on the color monitor that
fits into the side panel category is the model time, which
is displayed in the upper left corner of the monitor.

4.7.2 ARTBASS-M.

ARTBASS displays the current model time as an overlay of the .
digital map. The attributes of the displayed digital map
are displayed on the free space on the bottom of the screen.

4.7.3 NTC Test Support Driver.

The side panels of the color monitor contain information
indicating the status of the model and system. The side
panel information includes:

1. Current simulation time

2. Map center UTM coordinates

3. Cursor UTM coordinates

4. Map attributes

.

5. Map display and zoom level

6. Master menu prompts

7. Color dictionary

4.7.4 Mace.

Mace does not provide side panel displays on the color
monitor. The only item displayed on the color monitor that
fits into the side panel category is the time, which is
displayed on top of the background map.

4.7.5 Side Panel Assessment.

Because of the difference in resolution of the Lexidata and
De Anza, the side-panel information must be displayed in
different screen locations. The De Anza has free space on
both sides of the map display; therefore, the map
attributes should be displayed on the screen sides for the
NTC station. The Lexidata has free space on the bottom of
the map display; therefore, the map attributes should be
displayed on the screen bottom for the ARTBASS stations.

67

4.8 ALPHANUMERIC DISPLAYS.

The alphanumeric displays are used to keep the controller pr-
informed of what is happening in the model. Alerts of
significant happenings in the model are displayed on the CRT
and current unit status reports can be displayed upon
controller request.

4.8.1 CATTS.

4.8.1.1 Unit SRecial Status Report. The unit special status
report is displayed on the alphanumeric display when the
status report function key is hit. The unit is selected by
entering the unit name or number. The following unit
information is displayed in the status report: b

1. Simulation time of the report

2. Unit name

3. Unit number

4. Unit UTM location

5. Unit operational state

6. Unit rate of movement

7. Unit altitude

8. Unit suppression level percent

9. Units surrounding vegetation class

10. Visual detected equipment

11. Ammunition current load

12. Equipment initial and current load and number
manned I.

13. Personnel initial and current level

14. Fuel current load

4.8.1.2 Log/Admin Status The log/admin report is
included is the unit status report.

4.8.1.3 Tactical alerts. The math model generates tactical
alerts indicating significant unit events. The events
include visual detections, engagements, rate of movement -
changes, obstacle encounters, and losses. The alerts are

68

assigned to a console(s) by unit. The alert routing can beupdated by the task organization menu.

A tactical alert can be printed, routed to another console
with an attached message, or saved to be looked at in the
future. Alerts are dropped from the display by hitting the
drop function key or a whole page of alerts can be dropped
by hitting the page drop function key.

4.8.1.4 Interactor Alerts. Interactor alerts are displayed
on the color monitor. The alerts identify menu errors input
by the interactor and indicate if the menu was accepted or
not.

4.8.2 ARTBASS-M.

4.8.2.1 Unit SRecia Status ReDort. The uni.L special status
report is displayed on the alphanumeric display when the
status report function key is hit. The unit is selected by
entering the unit name or number. The following unit
information is displayed in the status report:

1. Simulation time of the report

2. Unit name

3. Unit number

4. Unit UTM location

5. Unit operational state

6. Unit rate of movement

7. Unit altitude

8. Unit suppression level percent

9. Units surrounding vegetation class

10. Visual detected equipment I
11. Ammunition current load

12. Equipment initial and current load and number
manned

13. Personnel initial and current level

14. Fuel current load

69

.". ..°-. "- . -" ... ". '. •...... .. . -' _ . .',.'. -,..' ..-..

If all the unit data cannot be displayed on one screen, the
rest of the data can be displayed by hitting the page drop
key.

yr
4.8.2.2 L/ in Status Reor. The log/admin report is
included in the unit status report.

4.8.2.3 T alerts. The math model generates tactical
alerts indicating significant unit events. The events
include visual detections, engagements, rate of movement p ,

changes, obstacle encounters and losses. The alerts are
assigned to a console(s) by unit. The alert routing can be
updated by the alert routing menu.

A tactical alert can be printed, routed to another console
with an attached message or saved to be looked at in the . .
future. Alerts are dropped from the display by hitting the
drop function key or a whole page of alerts can be dropped
by hitting the page drop function key.

4.8.2.4 Ie. Alerts. Interactor alerts are displayed
on the color monitor and on the multifunction keyboard. The
alerts identify menu input errors by the interactor and
indicate if the menu was accepted or not.

4.8.3 NTC Test Support Driver.

4.8.3.1 U= S Statu Report. The unit special status
report is displayed on on,: of the two alphanumeric displays
when the unit status function key is hit. The unit is
selected by entering the unit name. The following
information is displayed on the unit status report:

1. Simulation time of report

2. Unit name

3. Unit number

4. Unit UTM location

5. Unit operational state

6. Unit rate of movement

7. Unit altitude

8. Unit suppression level percent

9. Units surrounding vegetation class

70

r. .

10. Visual detected equipment

4.8.3.2 LoQ/Admin Status Report. The log/admin status
report is displayed on one of the two alphanumeric displays
when the log/admin function key is hit. The unit whose
assets are to be displayed on the screen is selected by
entering the unit name. The log/admin report includes:

1. Simulation time of report

2. Unit name

3. Unit number

4. Unit UTM location

5. Unit operational state

6. Equipment initial and current load and number
manned

7. Ammunition current load

8. Personnel initial and current level

9. Fuel current load

4.8.3.3 Tactical Alerts. The TSD math model generates
tactical alerts indicating significant unit and exercise
events. The events include visual detections, engagements,
rate of movement changes, obstacle encounters, losses, and
exercise status. The alerts to be displayed are selected by
each controller by alert category and unit via an
interactive menu on the alphanumeric display.

The tactical alerts are automatically scrolled on the
alphanumeric display and may be printed on the console
printer.

4.8.3.4 Interactor Alerts. Interactor alerts, indicating I.
interactor menu input errors and game status, are displayed
on the color monitor. The alert is erased from the screen
by hitting the ignore section of the alert with the graph
pen.

4.8.4 Mace.

4.8.4.1 Unit Secial Status Report. A unit special status
report is available on the ALOG console to show the current
status of a selected unit. The status report is selected
via a menu and the unit is selected by entering the unit
opcode. b

71

4.8.4.2 /Adn Status Report. A log/admin status report
is available on the ALOG console to show the current level
of petsonnel and equipment for a selected unit. The report
is selected via a menu and the unit is selected by entering
the unit opcode.

4.8.4.3 a Alerts. Instead of tactical alerts, Mace
provides loss reports which are displayed at the ALOG
console. The loss reports can be printed and delivered to
the appropriate controller.

4.8.4.4 Interactor Alerts. Interactor alerts do not exist

in Mace.

4.8.5 ohanumeric Disay Assesme.nt.b

To avoid complications in making changes to alerts or status
reports, only one alert and status system should be
implemented into the common model. Being it is necessary to
conform to the Perkin-Elmer ARTBASS system, the ARTBASS -
alert and status report system should be implemented on both _q
types of control stations. The implementation of the
ARTBASS alert and status system should not require any
changes to work on the ARTBASS control stations attached to
the VAX. However, for the alerts and status reports to work
on the NTC control station, the low level routines
containing the terminal I/O commands must be rewritten to
interact with the VT-125 instead of the P/E 1251.

72

-... *

L:

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE DEPARTMENT OF DEFENSE (Continued)

Armed Forces StafT College Principal Dep Under Sec of Def, Rsch & Engrg
ATTN: Library ATTN: J. Wade Jr.

Assist to the Sec of Def, Atomic Energy Program Analysis & Evaluation
ATTN: Mil Appl, C. Field ATTN: S. Johnson
ATTN: R. Wagner ATTN: Strat Programs

Defense Advanced Rsch Proj Agency US European Command
ATTN: TTO ATTN: ECJ-3

ATTN: ECJ-5
Defense Intell Agency

ATTN: Library US Natl Mil Representative, SHAPE
ATTN: RTS-2B Attention US Doc Ofc for

ATTN: Nuc Plans
Defense Nuclear Agency ATTN: Intel

ATTN: NASF ATTN: Pol, Nuc Concepts
ATTN: NATF
ATTN: NAWE US Readiness Command
ATTN: RAAE ATTN: J-3
ATTN: RAAE, K. Schwartz
ATTN: RAEE Under Sec of Def for Policy
ATTN: RAEV ATTN: Dir Plng & Requirements, M. Sheridan
ATTN: SPSS
ATTN: SPTD Under Secy of Def for Rsch & Engrg
ATTN: STBE ATTN: K. Hinman
ATTN: STNA
ATTN: STRA United States Central Command
ATTN: STSP ATTN: CCJ3-OX, Daigneault

4 cys ATTN: STTI-CA
DEPARTMENT OF THE ARMY ..-.

Defense Tech Info CenterD
P-"T.

12 cys ATTN: DD Asst Ch of Staff for Intell
ATTN: DAMI-FIT

Dep Under Sec of Def
ATTN: S&TNF, T. Jones Chemical Rsch & Dev Ctr

ATTN: SMCCR-OPR
Field Command, DNA, Det 2
Lawrence Livermore National Lab Dep Ch of Staff for Ops & Plans

ATTN: FC-I ATTN: DAMO-NCN
ATTN: DAMO-RQA, Firepower Div

DNA PACOM Liaison Ofc ATTN: DAMO-RQS
ATTN: J. Bartlett ATTN: DAMO-SSM, Pol-Mil Div

ATTN: Tech Advisor
Field Command, Defense Nuclear Agency 5 cys ATTN: DAMO-NC, Nuc Chem Dir

ATTN: FCPRW
ATTN: FCTT, W. Summa National Training Ctr
ATTN: FCTXE ATTN: TAF-NBC

Interservice Nuc Wpns School US Army Armament Rsch Dev & Cmd I
ATTN: Doc Control ATTN: DRDAR-LCN-E

Joint Chiefs of Staff US Army Ballistic Rsch Lab
ATTN: J-3, Strat Opns Div ATTN: DRDAR-BLA-S, Tech Lib
ATTN: J-5, Nuc/Chem Plcy Br, J. Steckler ATTN: DRDAR-BLV
ATTN: J-5, Nuc Div/Strat Div ATTN: R. Reisler
ATTN: J-5, Strat Div, W. McClain
ATTN: JAD/SFO US Army Chemical School
ATTN: JAD/SSD ATTN: ATZM-CM-F -

ATTN: ATZN-CM-CC
National Defense University ATTN: ATZN-CM-N

ATTN: NWCLB-CR
US Army Comd & General Staff College

Ofc of the Sec of Def, Net Assessments ATTN: DTAC
ATTN: Doc Control 3 cys ATTN: Combined Arms Rsch Lib

73

A- -

- -...... "" *

DEPARTMENT OF THE ARMY (Continued) DEPARTMENT OF THE ARMY (Continued)

US Army Comb Arms Combat Oev Acty ISA Military Academy
ATTN: ATZL-CAP-DT ATTN: Doc Lib
ATTN: ATZL-SWN
ATTN: ATZL-SWP USA Missile Command
ATTN: ATZL-SWT ATTN: DRSMI-RH
ATTN: ATZL-TAS-S ATTN: DRSMI-XF

US Army Concepts Analysis Agency V Corps
ATTN: CSSA-ADL, Tech Lib ATTN: G-2

ATTN: G-3
US Army Engineer School

ATTN: Library VII Corps
ATTN: G-2

US Army Europe & Seventh Army ATTN: G-3
ATTN: AEAGC-NC-C

DEPARTMENT OF THE NAVY
US Army Forces Command

ATTN: AF-OPTS Marine Corps
ATTN: AFOP-TN ATTN: Code OTOO-31

ATTN: DCS, P&O, Requirements Div
US Army Foreign Science & Tech Ctr ATTN: DCS, P&O, Strat Plans Div

ATTN: DRXST-SD-1
Marine Corps ev & Education Command

US Army Infantry Ctr & Sch ATTN: Commander
ATTN: ATSH-CD-CSO

Naval Postgraduate School
US Army Intel Threat Analysis Det ATTN: Code 1424, Library

ATTN: AIAIT-HI
Naval Research Laboratory

US Army Intell Ctr & School ATTN: Cede 2527, Tech Lib
ATTN: ATSI-CO-CS

Naval War College
US Army Logistics Ctr ATTN: Code E-I1, Tech Svc

ATTN: ATCL-OOL, S. Cockrell
Nuclear Weapons Tng Gp, Atlantic

US Army Material Command ATTN: Nuclear Warfare Dept
ATTN: DRCDE-D

Nuclear Weapons Tng Gp, Pacific
US Army Materiel Sys Analysis Actvy ATTN: Nuc Warfare Dept

ATTN: XS, W3JCAA
DEPARTMENT OF THE AIR FORCE

US Army Mobility Equip R&D Cmd
ATTN: DRDME-WC, Tech Lib, Vault Air Force Operational Test & Eval Ctr

ATTN: OA
US Army Nuclear & Chemical Agency

ATTN: Library Air University Library
ATTN: MONA-CM ATTN: AUL-LSE
ATTN: MONA-NW
ATTN: MONA-OPS Assist Ch of Staff, Studies & Analysis
ATTN: MONA-OPS, B. Thomas 2 cys ATTN: AF/SAMI, Tech Info DivATTN: MONA-OPS, J. Ratway -

Dep Ch of Staff, Plans & Opns

US Army TRADOC Sys Analysis Actvy ATTN: AFXOOR, Opns, Opnl Spt
ATTN: ATAA-TAC
ATTN: ATOR-TDB Foreign Technology Div

ATTN: SD
US Army Training & Doctrine Comd ATTN: TQ

ATTN: ATCD-FA
ATTN: ATCD-N DEPARTMENT OF ENERGY AGENCY
ATTN: ATiC-NC

Sandia National Laboratories
US Army War Col:.je ATTN: Tech Lib, 3141

ATTN: AWCAC, F. Braden, Dept of Tactics
ATTN: Library DEPARTMENT OF DEFENSE CONTRACTORS
ATTN: War Gaming Facility

Kaman Tempo
US Army Comb Arms Opns Rsch Acty ATTN: C. Anderson

ATTN: ATOR-CAT-T ATTN: DASIAC

74

DEPARTMENT OF DEFENSE CONTRACTORS (Continued) DEPARTMENT OF DEFENSE CONTRACTORS (Continued

Science Applications International Corp Kaman Tempo 1

ATTN: B. Packard ATTN. DASIAC
ATTN: D. Erickson
ATTN: J. Birney
ATTN: J. Ickler
ATTN: J. Martin
ATTN: L. Metzger
ATTN: M. Drake
ATTN: P. McKeown
ATTN: R. Plock

bid

..7

* 16

So~--t

586

orr

